RESEARCH PROGRESS OF NON-NOBLE METAL CATHODE MATERIALS FOR ALKALINE WATER ELECTROLYSIS

Wang Junru, Liu Taikai, Song Jiawei, Wang Xianbin, Deng Chunming, Wang Yingxiao

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 572-579.

PDF(2517 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2517 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 572-579. DOI: 10.19912/j.0254-0096.tynxb.2022-1007

RESEARCH PROGRESS OF NON-NOBLE METAL CATHODE MATERIALS FOR ALKALINE WATER ELECTROLYSIS

  • Wang Junru1,2, Liu Taikai2,3, Song Jiawei1,2, Wang Xianbin2, Deng Chunming2, Wang Yingxiao1
Author information +
History +

Abstract

Alkaline water electrolysis is the most mature hydrogen production technology of water electrolysis, because of the use of non-precious metal catalyst, so the cost is low, and has been widely used. However, the adoption of non-precious metal catalyst leads to its low electrolysis efficiency and working current density, which limits its development and application. Therefore, this paper mainly summarizes the methods of effectively improving the catalytic activity of elements by nitriding, phosphating, sulfurizing and alloying, so as to obtain high-performance catalytic materials. The application of density functional theory can design catalytic materials, and obtain high-activity catalytic materials more efficiently and conveniently. Finally, the future development direction of non-precious metal cathode materials for alkaline electrolytic water is summarized.

Key words

transition metals / catalysts / hydrogen evolution reaction / hydrogen production / alkaline water electrolysis / materials design

Cite this article

Download Citations
Wang Junru, Liu Taikai, Song Jiawei, Wang Xianbin, Deng Chunming, Wang Yingxiao. RESEARCH PROGRESS OF NON-NOBLE METAL CATHODE MATERIALS FOR ALKALINE WATER ELECTROLYSIS[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 572-579 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1007

References

[1] LI Y J, ZHOU L, GUO S J.Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte[J]. EnergyChem, 2021, 3(2): 100053.
[2] 刘芸. 绿色能源氢能及其电解水制氢技术进展[J]. 电源技术, 2012, 36(10): 1579-1581.
LIU Y.Rogress of green energy hydrogen energy and technology of hydrogen production by water electrolysis[J]. Chinese journal of power sources, 2012, 36(10): 1579-1581.
[3] 杨洁. 氢能源开发与利用发展现状浅析[J]. 深冷技术, 2017(6): 59-61.
YANG J.Analysis on the current situation of hydrogen energy development and utilization[J]. Cryogenic technology, 2017(6): 59-61.
[4] 王茂辉, 吴震. 浅谈电解水制氢的原理及发展[J]. 汽车实用技术, 2019(15): 237-238.
WANG M H, WU Z.The principle and development of hydrogen production by electrolytic water[J]. Automobile applied technology, 2019(15): 237-238.
[5] 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951.
GUO B W, LUO D, ZHOU H J.Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical industry and engineering progress, 2021, 40(6): 2933-2951.
[6] 杜迎晨, 雷浩, 钱余海. 电解水制氢技术概述及发展现状[J]. 上海节能, 2021(8): 824-831.
DU Y C, LEI H, QIAN Y H.Technology overview and development status of hydrogen production from water electrolysis[J]. Shanghai energy conservation, 2021(8): 824-831.
[7] 刘太楷, 邓春明, 张亚鹏. 电解水制氢发展概况之一: 碱式电解水[J]. 材料研究与应用, 2019, 13(4): 339-346.
LIU T K, DENG C M, ZHANG Y P.Development of hydrogen generation via water electrolysis Ⅰ: alkaline water electrolysis[J]. Materials research and application, 2019, 13(4): 339-346.
[8] 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
HE Z X, SHI C X, CHEN Z C, et al.Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical industry and engineering progress, 2021, 40(9): 4762-4773.
[9] 张玉魁, 陈换军, 孙振新, 等. 高温固体氧化物电解水制氢效率与经济性[J]. 广东化工, 2021, 48(18): 3-6, 24.
ZHANG Y K, CHEN H J, SUN Z X, et al.Efficiency and economy of hydrogen production from high temperature solid oxide electrolysis of water[J]. Guangdong chemical industry, 2021, 48(18): 3-6, 24.
[10] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
MA X F, ZHANG S H, HE Y, et al.Research and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427.
[11] 林才顺. 质子交换膜水电解技术研究现状[J]. 湿法冶金, 2010, 29(2): 75-78.
LIN C S.Research and development on proton exchange membrane water electrolysis technology[J]. Hydrometallurgy of China, 2010, 29(2): 75-78.
[12] 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学, 2020, 26(2): 212-229.
ZHANG W Q, YU B.Development status and prospects of hydrogen production by high temperature solid oxide electrolysis[J]. Journal of electrochemistry, 2020, 26(2): 212-229.
[13] TRASATTI S.Water electrolysis: who first?[J]. Journal of electroanalytical chemistry, 1999, 476(1): 90-91.
[14] YU H M, SHAO Z G, HOU M, et al.Hydrogen production by water electrolysis: progress and suggestions[J]. Chinese journal of engineering science, 2021, 23(2): 146.
[15] 田臻, 康建光, 孙梅娟, 等. 过渡金属双功能催化剂在碱性条件下电解水[J]. 工业催化, 2022, 30(8): 11-18.
TIAN Z, KANG J G, SUN M J, et al.Water electrolysis on transition metal bifunctional catalysts under alkaline conditions[J]. Industrial catalysis, 2022, 30(8): 11-18.
[16] 姜欣格. 碱式电解水电极多孔催化层冷喷涂制备及其性能研究[D]. 沈阳: 沈阳工业大学, 2021.
JIANG X G.Porous catalytic coating prepared by cold spray and properities study of alkaline water splitting electrode[D]. Shenyang: Shenyang University of Technology, 2021.
[17] 许昊翔. 基于第一性原理的过渡金属催化剂理论设计[D]. 北京: 北京化工大学, 2019.
XU H X.Theoretical design of transition metal catalyst based on first principle methods[D]. Beijing: Beijing University of Chemical Technology, 2019.
[18] 张一民, 康建立, 赵乃勤. 过渡金属基电解水催化剂的发展现状及展望[J]. 综合智慧能源, 2022, 44(5): 15-29.
ZHANG Y M, KANG J L, ZHAO N Q.Development and perspectives of the transition metal-based catalysts for water splitting[J]. Integrated intelligent energy, 2022, 44(5): 15-29.
[19] GALIZZIOLI D, TRASATTI S.Work function, electronegativity, and electrochemical behaviour of metals[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1973, 44(3): 367-388.
[20] 孟方友. 高效过渡金属磷化物电催化剂的设计、合成及应用[D]. 西安: 陕西科技大学, 2021.
MENG F Y.Design, synthesis and application of high efficiency transition metal phosphide electrocatalyst[D]. Xi’an: Shaanxi University of Science & Technology, 2021.
[21] GREELEY J, JARAMILLO T F, BONDE J, et al.Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nature materials, 2006, 5(11): 909-913.
[22] 赵林艳, 刘阳思, 席晓丽, 等. 基于第一性原理计算的纳米氧化钨研究进展[J]. 无机材料学报, 2021, 36(11): 1125-1136.
ZHAO L Y, LIU Y S, XI X L, et al.First-principles study on nanoscale tungsten oxide: a review[J]. Journal of inorganic materials, 2021, 36(11): 1125-1136.
[23] SHEN Y, ZHOU Y F, WANG D, et al.Nickel-copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction[J]. Advanced energy materials, 2018, 8(2): 1701759.
[24] 佟珊珊, 王雪靖, 李庆川, 等. 基于碳纤维材料基底的电解水制氢催化剂的研究进展[J]. 分析化学, 2016, 44(9): 1447-1457.
TONG S S, WANG X J, LI Q C, et al.Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials[J]. Chinese journal of analytical chemistry, 2016, 44(9): 1447-1457.
[25] 骆永伟, 朱亮, 王向飞, 等. 电解水制氢催化剂的研究与发展[J]. 金属功能材料, 2021, 28(3): 58-66.
LUO Y W, ZHU L, WANG X F, et al.Research and development of electrolytic water hydrogen production catalyst[J]. Metallic functional materials, 2021, 28(3): 58-66.
[26] 秦睿, 王鹏彦, 林灿, 等. 过渡金属氮化物的活性起源、合成方法及电催化应用[J]. 物理化学学报, 2021, 37(7): 47-65.
QIN R, WANG P Y, LIN C, et al.Transition metal nitrides: activity origin, synthesis and electrocatalytic applications[J]. Acta physico-chimica sinica, 2021, 37(7): 47-65.
[27] 任文坡, 张彦, 葛少辉, 等. 过渡金属磷化物催化剂的研究进展[J]. 石化技术与应用, 2015, 33(2): 172-179.
REN W P, ZHANG Y, GE S H, et al.Recent research progress of transition metal phosphide catalysts[J]. Petrochemical technology & application, 2015, 33(2): 172-179.
[28] 温丽珍, 龙洁清, 杨晶, 等. MoS2纳米材料高效析氢研究进展[J]. 南宁师范大学学报(自然科学版), 2021, 38(3): 81-88.
WEN L Z, LONG J Q, YANG J, et al.Research progress on high efficiency hydrogen evolution of MoS2 nanomaterials[J]. Journal of Nanning Normal University (natural science edition), 2021, 38(3): 81-88.
[29] 潘致宇. 过渡金属基电催化析氢材料的研究进展[J]. 当代化工研究, 2019(2): 143-144.
PAN Z Y.Research progress of transition metal-based electrocatalytic hydrogen evolution materials[J]. Modern chemical research, 2019(2): 143-144.
[30] 陈梁. 石墨烯/过渡金属氮化物复合电极的制备及电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
CHEN L.Prepration of graphene/transition metal nitrides compound electrode and their electrochemical performance[D]. Harbin: Harbin Institute of Technology, 2017.
[31] FANG Y, XUE Y R, HUI L, et al.In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting[J]. Nano energy, 2019, 59: 591-597.
[32] MA Y C, LU S, HAN G R, et al.Chemical vapor deposition of two-dimensional molybdenum nitride/graphene van der Waals heterostructure with enhanced electrocatalytic hydrogen evolution performance[J]. Applied surface science, 2022, 589: 152934.
[33] 李文龙. 过渡金属氮、磷化物的制备及电化学析氢反应性能研究[D]. 天津: 天津理工大学, 2020.
LI W L.Novel preparation method of transition metal nitrides and phosphides nanomaterials and electrochemical hydrogen evolution reaction performance[D]. Tianjin: Tianjin University of Technology, 2020.
[34] YU L P, ZHANG J A, DANG Y L, et al.In situ growth of Ni2P-Cu3P bimetallic phosphide with bicontinuous structure on self-supported NiCuC substrate as an efficient hydrogen evolution reaction electrocatalyst[J]. ACS catalysis, 2019, 9(8): 6919-6928.
[35] XING Z C, LIU Q, ASIRI A M, et al.Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water[J]. Advanced materials, 2014, 26(32): 5702-5707.
[36] WANG R, DONG X Y, DU J, et al.MOF-derived bifunctional Cu3 P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction[J]. Advanced materials, 2018, 30(6): 1703711.
[37] 陈香平, 苏丽荣, 吴燕霞, 等. 过渡金属磷化物用于电解水析氢反应的研究进展[J]. 功能材料, 2021, 52(6): 6059-6068.
CHEN X P, SU L R, WU Y X, et al.Research progress of transition metal phosphides for electrocatalytic hydrogen evolution reaction[J]. Journal of functional materials, 2021, 52(6): 6059-6068.
[38] 季小好, 王祖民, 陈晓煜, 等. 过渡金属磷化物的制备及电催化析氢性能提升策略[J]. 高等学校化学学报, 2021, 42(5): 1377-1394.
JI X H, WANG Z M, CHEN X Y, et al.Overview of transition metal phosphide catalysts and hydrogen production by electrolyzed water[J]. Chemical journal of Chinese universities, 2021, 42(5): 1377-1394.
[39] LI Y G, WANG H L, XIE L M, et al.MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19): 7296-7299.
[40] HINNEMANN B, MOSES P G, BONDE J, et al.Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15): 5308-5309.
[41] WU W Z, NIU C Y, WEI C, et al.Activation of MoS2 basal planes for hydrogen evolution by zinc[J]. Angewandte Chemie (international Ed in English), 2019, 58(7): 2029-2033.
[42] GAO T, NIE M, LUO J, et al.Nickel sulfides supported by carbon spheres as efficient catalysts for hydrogen evolution reaction[J]. Electrochemistry communications, 2021, 129: 107076.
[43] 李凯迪. 过渡金属硫化物、磷化物复合材料的制备及其电解水性能研究[D]. 郑州: 郑州大学, 2019.
LI K D.Transition-metal sulphides and phosphides composite: preparation and their application for electrochemical water splitting[D]. Zhengzhou: Zhengzhou University, 2019.
[44] 程鹏飞, 冯婷, 刘紫薇, 等. 激光直写制备三维自支撑NiS2/MoS2复合电催化剂应用于碱性和中性电解水制氢(英文)[J]. 催化学报(英文), 2019, 40(8): 1147-1152.
CHENG P F, FENG T, LIU Z W, et al.Laser-direct-writing of 3D self-supported NiS2/MoS2 heterostructures as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and neutral electrolytes[J]. Chinese journal of catalysis, 2019, 40(8): 1147-1152.
[45] 宋乃建, 郭明媛, 南皓雄, 等. 过渡金属基催化剂用于氧析出反应的研究进展[J]. 储能科学与技术, 2021, 10(6): 1906-1917.
SONG N J, GUO M Y, NAN H X, et al.Recent advances in transition metal-based catalysts for oxygen evolution reaction[J]. Energy storage science and technology, 2021, 10(6): 1906-1917.
[46] ZHAO Y, ZHANG J, ZHANG W S, et al.Growth of Ni/Mo/Cu on carbon fiber paper: an efficient electrocatalyst for hydrogen evolution reaction[J]. International journal of hydrogen energy, 2021, 46(72): 35550-35558.
[47] LI J Z, GU X Y, CHANG J L, et al.Molybdenum oxide-iron, cobalt, copper alloy hybrid as efficient bifunctional catalyst for alkali water electrolysis[J]. Journal of colloid and interface science, 2022, 606: 1662-1672.
[48] GUO H L, ZHOU J, LI Q Q, et al.Emerging dual-channel transition-metal-oxide quasiaerogels by self-embedded templating[J]. Advanced functional materials, 2020, 30(15): 2000024.
[49] ANWAR S, KHAN F, ZHANG Y H, et al.Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. International journal of hydrogen energy, 2021, 46(63): 32284-32317.
[50] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[51] 孟凡, 张惠铃, 姬姗姗, 等. 高效电解水制氢发展现状与技术优化策略[J]. 黑龙江大学自然科学学报, 2021, 38(6): 702-713.
MENG F, ZHANG H L, JI S S, et al.Progress and technology strategies of hydrogen evolution reaction by high efficiency water electrolysis[J]. Journal of Natural Science of Heilongjiang University, 2021, 38(6): 702-713.
PDF(2517 KB)

Accesses

Citation

Detail

Sections
Recommended

/