STUDY ON SOFC-GT-KC HYBRID POWER SYSTEM WITH HIGH TEMPERATURE SOLAR THERMOCHEMISTRY AND METHANE COMPLEMENTARY

Wang Qiushi, Jiang Xiaofu, Duan Liqiang, Zheng Hongxu, Lu Ziyi

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 218-228.

PDF(1811 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1811 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (10) : 218-228. DOI: 10.19912/j.0254-0096.tynxb.2022-1013

STUDY ON SOFC-GT-KC HYBRID POWER SYSTEM WITH HIGH TEMPERATURE SOLAR THERMOCHEMISTRY AND METHANE COMPLEMENTARY

  • Wang Qiushi1, Jiang Xiaofu2, Duan Liqiang1, Zheng Hongxu2, Lu Ziyi1
Author information +
History +

Abstract

A new high temperature solar thermochemistry and methane complementary solid oxide fuel cell-gas turbine-Kalina cycle (SOFC-GT-KC) hybrid power system is proposed in this paper, which uses high temperature solar energy to drive methane reforming to produce hydrogen, converts solar energy into chemical energy of hydrogen-rich fuel syngas, and realizes the conversion and storage of solar energy. The SOFC-GT-KC system generates electricity using the produced hydrogen, achieving the energy cascade utilization. This study explores the operating characteristics of the new system on typical days in various seasons, evaluates the influences of key factors on the new system performance, and proposes different operation strategies. The results show that under the design conditions, the electricity efficiency and exergy efficiency of the new system are 62.28% and 64.92%, respectively. Compared with the reference SOFC-GT-KC system without integrating with solar thermochemical process under the same conditions, the output power of the new system is increased by 31.90% and the exergy efficiency is increased by 2.77 percentage points. Under design conditions, with the same electric power output, the new system saves 29.6% fossil fuel than that of the reference system.

Key words

solar energy / hydrogen production / thermochemical energy storage / fuel cell / cascade utilization

Cite this article

Download Citations
Wang Qiushi, Jiang Xiaofu, Duan Liqiang, Zheng Hongxu, Lu Ziyi. STUDY ON SOFC-GT-KC HYBRID POWER SYSTEM WITH HIGH TEMPERATURE SOLAR THERMOCHEMISTRY AND METHANE COMPLEMENTARY[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 218-228 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1013

References

[1] 杜娟, 洪宇翔, 杨晓西, 等. 甲烷重整热化学储能实验及数值模拟研究[J]. 太阳能学报, 2015, 36(11): 2765-2771.
DU J, HONG Y X, YANG X X, et al.Studies on experiment and numerical simulation for CO2 reforming of CH4[J]. Acta energiae solaris sinica, 2015, 36(11): 2765-2771.
[2] 王亚蓉, 丁静, 陆建峰, 等. 太阳模拟器加热下甲烷重整管式反应器的热化学储能特性[J]. 太阳能学报, 2021, 42(11): 163-168.
WANG Y R, DING J, LU J F, et al.Thermochemical energy storage characteristics of methane steam reforming in tube reactor with focused solar simulation[J]. Acta energiae solaris sinica, 2021, 42(11): 163-168.
[3] 闫振宇. 高汇聚太阳能流下甲烷水蒸气重整制氢的瞬态特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
YAN Z Y.Numerical simulation of transient response characteristics in methane steam reforming using concentrated solar irradiation as heat source[D]. Harbin: Harbin Institute of Technology, 2015.
[4] SHEU E J, MOKHEIMER E M A, GHONIEM A F. A review of solar methane reforming systems[J]. International journal of hydrogen energy, 2015, 40(38): 12929-12955.
[5] 刘彦铄, 王新赫, 张军社, 等. 太阳能甲烷重整反应器研究进展[J]. 化工进展, 2019, 38(12): 5339-5350.
LIU Y S, WANG X H, ZHANG J S, et al.Progress in solar methane reforming reactors[J]. Chemical industry and engineering progress, 2019, 38(12): 5339-5350.
[6] 王雨晴, 童欣, 袁磊. 便携式固体氧化物燃料电池系统控制研究现状与进展[J]. 中国电机工程学报, 2021, 41(9): 3273-3283.
WANG Y Q, TONG X, YUAN L.Research status and advances in control of portable solid oxide fuel cell systems[J]. Proceedings of the CSEE, 2021, 41(9): 3273-3283.
[7] 涂超, 黄跃武. 固体氧化物燃料电池和热辐射电池耦合系统的优化分析[J]. 太阳能学报, 2021, 42(10): 355-360.
TU C, HUANG Y W.Optimum analysis of a coupled system of solid oxide fuel cell and thermoradiative cell[J]. Acta energiae solaris sinica, 2021, 42(10): 355-360.
[8] ZHENG Z M, LIU T X, LIU Q B, et al.A distributed energy system integrating SOFC-MGT with mid-and-low temperature solar thermochemical hydrogen fuel production[J]. International journal of hydrogen energy, 2021, 46(38): 19846-19860.
[9] GHORBANI S, KHOSHGOFTAR-MANESH M H, NOURPOUR M, et al. Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system[J]. Energy, 2020, 206: 118151.
[10] 李子申, 李惟毅, 陈彤, 等. 基于卡琳娜循环的功冷联供系统热力学分析[J]. 太阳能学报, 2017, 38(6): 1660-1666.
LI Z S, LI W Y, CHEN T, et al.Thermodynamic analysis for combined cooling and power system based on kalina cycle[J]. Acta energiae solaris sinica, 2017, 38(6): 1660-1666.
[11] ZHAO H B, JIANG T, YANG Q, et al.Performance analysis of combined cycle system driven by solid oxide fuel cell[C]//Proceedings of the 2015 International Conference on Electrical, Automation and Mechanical Engineering, Phuket, Thailand, 2015.
[12] 王梦颖, 冯霄, 王彧斐. 不同余热情况下有机朗肯循环和卡琳娜循环能量性能对比[J]. 化工学报, 2016, 67(12): 5089-5097.
WANG M Y, FENG X, WANG Y F.Comparison of energy performance of organic Rankine and Kalina cycles considering different waste heat sources[J]. CIESC journal, 2016, 67(12): 5089-5097.
[13] 闫云飞, 刘科, 张力. 压力和温度对用于燃料电池的微型反应器内甲烷自热重整特性的影响[J]. 中国电机工程学报, 2012, 32(26): 65-71, 148.
YAN Y F, LIU K, ZHANG L.Influences of pressure and temperature on characteristics of auto-thermal reforming of methane in microreactors used for fuel cells[J]. Proceedings of the CSEE, 2012, 32(26): 65-71, 148.
[14] 王玉璋, 惠宇, 于建国, 等. 平板式固体氧化物燃料电池Ni/YSZ阳极上甲烷重整过程实验研究[J]. 中国电机工程学报, 2009, 29(14): 104-108.
WANG Y Z, HUI Y, YU J G, et al.Experimental investigation on methane steam reforming over a Ni/YSZ anode of planar solid oxide fuel cell[J]. Proceedings of the CSEE, 2009, 29(14): 104-108.
[15] 谢静, 徐明益, 班帅, 等. 天然气内重整和外重整下SOFC多场耦合三维模拟分析[J]. 化工学报, 2019, 70(1): 214-226.
XIE J, XU M Y, BAN S, et al.Simulation analysis of multi-physics coupling SOFC fueled nature gas in the way of internal reforming and external reforming[J]. CIESC journal, 2019, 70(1): 214-226.
[16] 黄尚龙, 杨晨, 陈浩, 等. 燃料预重整份额对SOFC-GT混合发电系统设计的影响[J]. 中国电机工程学报, 2022, 42(10): 3691-3701.
HUANG S L, YANG C, CHEN H, et al.Effects of fuel pre-reforming ratio on system design performance of a natural gas solid oxide fuel cell/gas turbine hybrid system[J]. Proceedings of the CSEE, 2022, 42(10): 3691-3701.
[17] KONG H, HAO Y, WANG H S.A solar thermochemical fuel production system integrated with fossil fuel heat recuperation[J]. Applied thermal engineering, 2016, 108: 958-966.
[18] WANG H S, LIU M K, KONG H, et al.Thermodynamic analysis on mid/low temperature solar methane steam reforming with hydrogen permeation membrane reactors[J]. Applied thermal engineering, 2019, 152: 925-936.
[19] 刘玉磊. 新型带蓄能的太阳能热互补联合循环发电系统研究[D]. 北京: 华北电力大学, 2019.
LIU Y L.Study on the integrated solar combined cycle with thermal energy storage system[D]. Beijing: North China Electric Power University, 2019.
[20] LU Z Y, DUAN L Q, WANG Z.Performance evaluation of a novel CCHP system integrated with MCFC, ISCC and LiBr refrigeration system[J]. International journal of hydrogen energy, 2022, 47(48): 20957-20972.
[21] 孔慧, 郝勇, 王宏圣, 等. 太阳能高温热化学与甲烷互补的多联产系统[J]. 工程热物理学报, 2015, 36(4): 691-697.
KONG H, HAO Y, WANG H S, et al.A solar thermochemical polygeneration system integrated with methane[J]. Journal of engineering thermophysics, 2015, 36(4): 691-697.
[22] LU Z Y, DUAN L Q, WANG Z, et al.Performance study of solar aided molten carbonate fuel cell-steam turbine-combined cooling, heating and power system with different schemes[J]. Energy conversion and management, 2022, 263: 115704.
[23] XU D, LIU Q B, LEI J, et al.Performance of a combined cooling heating and power system with mid-and-low temperature solar thermal energy and methanol decomposition integration[J]. Energy conversion and management, 2015, 102: 17-25.
[24] ZHAO Q, WANG Y, WANG Y N, et al.Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: effect of H2O/CH4 ratio on carbon deposition[J]. International journal of hydrogen energy, 2020, 45(28): 14281-14292.
[25] IGLESIAS I, BARONETTI G, MARIÑO F. Ni/Ce0.95M0.05O2-d (M=Zr, Pr, La) for methane steam reforming at mild conditions[J]. International journal of hydrogen energy, 2017, 42(50): 29735-29744.
[26] AMJAD U E S, QUINTERO C W M, ERCOLINO G, et al. Methane steam reforming on the Pt/CeO2 catalyst: effect of daily start-up and shut-down on long-term stability of the catalyst[J]. Industrial & engineering chemistry research, 2019, 58(36): 16395-16406.
[27] SUI J Y, CHEN Z N, WANG C, et al.Efficient hydrogen production from solar energy and fossil fuel via water-electrolysis and methane-steam-reforming hybridization[J]. Applied energy, 2020, 276: 115409.
[28] ZHANG W, CROISET E, DOUGLAS P L, et al.Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models[J]. Energy conversion and management, 2005, 46(2): 181-196.
[29] ZHAO H B, JIANG T, HOU H C.Performance analysis of the SOFC-CCHP system based on H2O/Li-Br absorption refrigeration cycle fueled by coke oven gas[J]. Energy, 2015, 91: 983-993.
[30] 岳秀艳. 基于SOFC/GT的冷热电联合循环系统的特性研究[D]. 济南: 山东大学, 2015.
YUE X Y.Performance research of the cooling, heating and power cogeneration system based on SOFC/GT[D]. Jinan: Shandong University, 2015.
[31] WANG J F, YAN Z Q, MA S L, et al.Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell[J]. International journal of hydrogen energy, 2012, 37(3): 2535-2545.
[32] LI Y Y, ZHANG N, CAI R X.Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming[J]. Energy, 2013, 58: 36-44.
[33] ZHANG N, WANG Z F, LIOR N, et al.Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system[J]. Applied energy, 2018, 219: 179-186.
PDF(1811 KB)

Accesses

Citation

Detail

Sections
Recommended

/