RESEARCH ON VOLTAGE REGULATION CONTROL OF DC MICROGRID BASED ON VIRTUAL INERTIA AND DAMPING PARAMETERS' ADAPTIVE STRATEGY

Zuo Yunpei, Wang Delin, Zhou Xin, Li Jinghua, Hu Jie, Lu Jiayi

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 485-494.

PDF(2810 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2810 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 485-494. DOI: 10.19912/j.0254-0096.tynxb.2022-1040

RESEARCH ON VOLTAGE REGULATION CONTROL OF DC MICROGRID BASED ON VIRTUAL INERTIA AND DAMPING PARAMETERS' ADAPTIVE STRATEGY

  • Zuo Yunpei1, Wang Delin1, Zhou Xin2, Li Jinghua1, Hu Jie1, Lu Jiayi1
Author information +
History +

Abstract

The DC microgrid with high-power wind and solar energy storage has the typical characteristics of "small inertia, weak damping". After the system is disturbed, it will cause the DC bus voltage to fluctuate violently. Therefore, this paper proposes an adaptive control strategy to improve the virtual inertia and damping parameters. Firstly, a voltage compensation link is added to the control of similar virtual synchronous generator to eliminate the voltage regulation static error caused by the control. Then the virtual inertia and damping parameters are made to respond to the DC voltage fluctuation adaptively, and the influence of the output power limitation of the converter is considered in the adaptive control of the virtual inertia, which not only suppresses the DC voltage fluctuation, but also takes into account the long-term safe operation of the converter. In order to ensure the reasonable selection of control parameters, this paper establishes a small signal analysis model of the control strategy, and analyzes the influence of the main parameters on the stability of the system by drawing the root locus diagram. Finally, the effectiveness of the improved control strategy proposed in this paper is verified by a simulation example.

Key words

microgrids / voltage control / adaptive control systems / DC system / virtual inertia and damping / small signal analysis

Cite this article

Download Citations
Zuo Yunpei, Wang Delin, Zhou Xin, Li Jinghua, Hu Jie, Lu Jiayi. RESEARCH ON VOLTAGE REGULATION CONTROL OF DC MICROGRID BASED ON VIRTUAL INERTIA AND DAMPING PARAMETERS' ADAPTIVE STRATEGY[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 485-494 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1040

References

[1] 蒋智化, 刘连光, 刘自发, 等. 直流配电网功率控制策略与电压波动研究[J]. 中国电机工程学报, 2016, 36(4): 919-926.
JIANG Z H, LIU L G, LIU Z F, et al.Research on power flow control and the voltage fluctuation characteristics of DC distribution networks based on different control strategies[J]. Proceedings of the CSEE, 2016, 36(4): 919-926.
[2] 伍文华, 陈燕东, 罗安, 等. 一种直流微网双向并网变换器虚拟惯性控制策略[J]. 中国电机工程学报, 2017, 37(2): 360-372.
WU W H, CHEN Y D, LUO A, et al.A virtual inertia control strategy for bidirectional grid-connected converters in DC micro-grids[J]. Proceedings of the CSEE, 2017, 37(2): 360-372.
[3] 李霞林, 王成山, 郭力, 等. 直流微电网稳定控制关键技术研究综述[J]. 供用电, 2015, 32(10): 1-14.
LI X L, WANG C S, GUO L, et al.A review on the key stability control technologies of DC microgrid[J]. Distribution & utilization, 2015, 32(10): 1-14.
[4] 朱珊珊, 汪飞, 郭慧, 等. 直流微电网下垂控制技术研究综述[J]. 中国电机工程学报, 2018, 38(1): 72-84, 344.
ZHU S S, WANG F, GUO H, et al.Overview of droop control in DC microgrid[J]. Proceedings of the CSEE, 2018, 38(1): 72-84, 344.
[5] 陈昱芝. 直流配电网电压控制策略的研究[D]. 太原: 山西大学, 2021.
CHEN Y Z.Research on voltage control strategy of DC distribution network[D]. Taiyuan: Shanxi University, 2021.
[6] 曹建博, 王林, 黄辉, 等. 直流微电网多端口变换器虚拟惯性控制策略[J]. 电网技术, 2021, 45(7): 2604-2615.
CAO J B, WANG L, HUANG H, et al.Virtual inertia control strategy of multi-port converter used in DC micro-grid[J]. Power system technology, 2021, 45(7): 2604-2615.
[7] 段俐存, 赵巧娥, 高金城, 等. 直流配电网中变流器的虚拟惯量自适应控制[J]. 电力电子技术, 2019, 53(12): 52-54, 62.
DUAN L C, ZHAO Q E, GAO J C, et al.Virtual inertia adaptive control of grid-connected converter in direct current distribution network[J]. Power electronics, 2019, 53(12): 52-54, 62.
[8] 张祥宇, 李浩, 付媛. 含新型虚拟电机的直流微网动态稳定性分析与自适应电压惯性控制[J]. 高电压技术, 2021, 47(8): 2865-2874.
ZHANG X Y, LI H, FU Y.Dynamic stability analysis and self-adaptive voltage inertia control of DC microgrids with novel virtual machine[J]. High voltage engineering, 2021, 47(8): 2865-2874.
[9] ZHANG Y, SUN Q Y, ZHOU J G, et al.Coordinated control of networked AC/DC microgrids with adaptive virtual inertia and governor-gain for stability enhancement[J]. IEEE transactions on energy conversion, 2021, 36(1): 95-110.
[10] 曾国辉, 廖鸿飞, 赵晋斌, 等. 直流微网双向DC/DC变换器虚拟惯量和阻尼系数自适应控制策略[J]. 电力系统保护与控制, 2022, 50(6): 65-73.
ZENG G H, LIAO H F, ZHAO J B, et al.A self-adaptive control strategy of virtual inertia and a damping coefficient for bidirectional DC-DC converters in a DC microgrid[J]. Power system protection and control, 2022, 50(6): 65-73.
[11] 王毅, 张丽荣, 李和明, 等. 风电直流微网的电压分层协调控制[J]. 中国电机工程学报, 2013, 33(4): 16-24, 4.
WANG Y, ZHANG L R, LI H M, et al.Hierarchical coordinated control of wind turbine-based DC microgrid[J]. Proceedings of the CSEE, 2013, 33(4): 16-24, 4.
[12] 张继红, 赵锐, 高雷, 等. 直流微网母线电压稳定控制策略[J]. 电网技术, 2021, 45(12): 4922-4929.
ZHANG J H, ZHAO R, GAO L, et al.DC bus voltage stability control strategy for DC microgrid[J]. Power system technology, 2021, 45(12): 4922-4929.
[13] 孟明, 陈世超, 卢玉舟, 等. 基于功率分层的直流微电网协调控制策略[J]. 电力自动化设备, 2017, 37(4): 30-37.
MENG M, CHEN S C, LU Y Z, et al.Coordinated control based on power hierarchy for DC microgrid[J]. Electric power automation equipment, 2017, 37(4): 30-37.
[14] 陆晓楠, 孙凯, 黄立培, 等. 直流微电网储能系统中带有母线电压跌落补偿功能的负荷功率动态分配方法[J]. 中国电机工程学报, 2013, 33(16): 37-46, 20.
LU X N, SUN K, HUANG L P, et al.Dynamic load power sharing method with elimination of bus voltage deviation for energy storage systems in DC micro-grids[J]. Proceedings of the CSEE, 2013, 33(16): 37-46, 20.
[15] 赵丹阳. 风光储直流微电网协调控制研究[D]. 成都: 西南交通大学, 2015.
ZHAO D Y.Research on coordinated control of DC micro grid scenery storage[D]. Chengdu: Southwest Jiaotong University, 2015.
[16] 肖朝霞, 贾双, 朱建国, 等. 风光储微电网并网联络线功率控制策略[J]. 电工技术学报, 2017, 32(15): 169-179.
XIAO Z X, JIA S, ZHU J G, et al.Tie-line power flow control strategy for a grid-connected microgrid containing wind, photovoltaic and battery[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 169-179.
[17] 殷桂梁, 董浩, 代亚超, 等. 光伏微网中虚拟同步发电机参数自适应控制策略[J]. 电网技术, 2020, 44(1): 192-199.
YIN G L, DONG H, DAI Y C, et al.Adaptive control strategy of VSG parameters in photovoltaic microgrid[J]. Power system technology, 2020, 44(1): 192-199.
[18] 程启明, 孙伟莎, 程尹曼, 等. 直流微网中PV发电系统的改进型恒压控制策略[J]. 太阳能学报, 2019, 40(11): 3071-3077.
CHENG Q M, SUN W S, CHENG Y M, et al.Imoroved constant voltage control of pv power generation system in DC microgrid[J]. Acta energiae solaris sinica, 2019, 40(11): 3071-3077.
[19] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175.
ZHENG T W, CHEN L J, CHEN T Y, et al.Review and prospect of virtual synchronous generator technologies[J]. Automation of electric power systems, 2015, 39(21): 165-175.
[20] 毛福斌, 张兴, 刘芳, 等. 基于虚拟阻尼补偿的改进型VSG控制策略研究[J]. 电力电子技术, 2016, 50(9): 75-78.
MAO F B, ZHANG X, LIU F, et al.Research on improved VSG control strategy based on virtual damping compensation[J]. Power electronics, 2016, 50(9): 75-78.
[21] 朱晓荣, 孟凡奇. 含虚拟惯性控制的直流微电网稳定性分析[J]. 电网技术, 2020, 44(1): 208-218.
ZHU X R, MENG F Q.Stability analysis of DC microgrid with virtual inertia control[J]. Power system technology, 2020, 44(1): 208-218.
[22] 刘英培, 周素文, 梁海平, 等. 光储直流配电网灵活虚拟惯性控制策略[J]. 电力自动化设备, 2021, 41(5): 107-113.
LIU Y P, ZHOU S W, LIANG H P, et al.Flexible virtual inertial control strategy of photovoltaic-energy storage DC distribution network[J]. Electric power automation equipment, 2021, 41(5): 107-113.
[23] 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1): 2-17.
LI X L, GUO L, WANG C S, et al.Key technologies of DC microgrids: an overview[J]. Proceedings of the CSEE, 2016, 36(1): 2-17.
[24] EREN S Z, PAHLEVANI M, BAKHSHAI A, et al.An adaptive droop DC-bus voltage controller for a grid-connected voltage source inverter with LCL filter[J]. IEEE transactions on power electronics, 2015, 30(2): 547-560.
PDF(2810 KB)

Accesses

Citation

Detail

Sections
Recommended

/