MIXED WEIBULL DISTRIBUTION APPROXIMATION OF SHORT-TERM OFFSHORE WIND SPEED

Ye Xingru, Dong Shufeng, Yan Qiuyu, Zhao Yifan, Luan Fuhao, Zhu Ronghua

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 224-230.

PDF(1983 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1983 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 224-230. DOI: 10.19912/j.0254-0096.tynxb.2022-1043

MIXED WEIBULL DISTRIBUTION APPROXIMATION OF SHORT-TERM OFFSHORE WIND SPEED

  • Ye Xingru1,2, Dong Shufeng3, Yan Qiuyu3, Zhao Yifan1, Luan Fuhao1, Zhu Ronghua1,4
Author information +
History +

Abstract

The wind speed distribution in offshore wind farms is an important factor for evaluating the generated capacity. The distribution of short-term wind speed in offshore wind farms always has multi-peak characteristics, so the mixed Weibull distribution is required. Due to the variety of parameters and the difficulty in making the approximation of this distribution, a mixed Weibull distribution approximation method, which takes the minimum variance as the optimization objective and the value range of each parameter as the constraint condition, is proposed in this paper. Further, a modified particle swarm optimization algorithm, DAIW-tanh, is used to optimize the parameters in the proposed method, which can enhance the approximation accuracy of multi-peak wind speed distribution. The numerical results show that the method is able to achieve higher approximation accuracy and higher computation speed, and is not easily trapped in local optimization, leading to a better approximation effect.

Key words

offshore wind power / offshore wind farms / Weibull distribution / parameter estimation / particle swarm optimization

Cite this article

Download Citations
Ye Xingru, Dong Shufeng, Yan Qiuyu, Zhao Yifan, Luan Fuhao, Zhu Ronghua. MIXED WEIBULL DISTRIBUTION APPROXIMATION OF SHORT-TERM OFFSHORE WIND SPEED[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 224-230 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1043

References

[1] 王松岩, 于继来. 短时风速概率分布的混合威布尔逼近方法[J]. 电力系统自动化, 2010, 34(6): 89-93.
WANG S Y, YU J L.Approximation of two-peak wind speed probability density function with mixed Weibull distribution[J]. Automation of electric power systems, 2010, 34(6): 89-93.
[2] 周泽人, 舒印彪, 董存, 等. 基于混合威布尔分布的风能资源分布统计分析研究[J]. 数理统计与管理, 2020, 39(4): 584-594.
ZHOU Z R, SHU Y B, DONG C, et al.Statistical analysis of wind energy distribution based on mixture Weibull distribution model[J]. Journal of applied statistics and management, 2020, 39(4): 584-594.
[3] 郭楚珊, 郭鹏, 杨锡运. 基于三适应度粒子群算法的风速威布尔分布参数估计[J]. 太阳能学报, 2019, 40(1): 206-212.
GUO C S, GUO P, YANG X Y.Wind Weibull distribution parameter estimation based on three fitness pso algorithm[J]. Acta energiae solaris sinica, 2019, 40(1): 206-212.
[4] HE J Y, CHAN P W, LI Q S, et al.Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong[J]. Energy, 2020, 201: 117622.
[5] KUMAR M B H, BALASUBRAMANIYAN S, PADMANABAN S, et al. Wind energy potential assessment by Weibull parameter estimation using multiverse optimization method: a case study of Tirumala region in India[J]. Energies, 2019, 12(11): 2158.
[6] FINO. Standort[EB/OL].https: //www.fino3.de/de/standort.html.
[7] 夏丽丽. 基于混合分布的风速不确定性分析[D]. 成都: 西南交通大学, 2020.
XIA L L.Uncertainty analysis of wind speed based on mixture distribution[D]. Chengdu: Southwest Jiaotong University, 2020.
[8] 王淼, 曾利华. 风速频率分布模型的研究[J]. 水力发电学报, 2011, 30(6): 204-209.
WANG M, ZENG L H.Study of wind speed frequency distribution model[J]. Journal of hydroelectric engineering, 2011, 30(6): 204-209.
[9] 金国骍, 胡文忠. 风速频率分布混合模型的研究[J]. 太阳能学报, 1994, 15(4): 353-357.
JIN G X, HU W Z.A mix model for calculating the wind speed frequency distribution[J]. Acta energiae solaris sinica, 1994, 15(4): 353-357.
[10] 马惠群, 王远坤. 逐时风速概率分布研究[J]. 电网与清洁能源, 2018, 34(12): 53-58.
MA H Q, WANG Y K.Research on probability distribution of hourly wind speed[J]. Power system and clean energy, 2018, 34(12): 53-58.
[11] MERT İ, KARAKUŞ C.A statistical analysis of wind speed data using Burr, generalized gamma, and Weibull distributions in Antakya, Turkey[J]. Turkish journal of electrical engineering & computer sciences, 2015, 23: 1571-1586.
[12] 凌丹, 黄洪钟, 张小玲, 等. 混合威布尔分布参数估计的L-M算法[J]. 电子科技大学学报, 2008, 37(4): 634-636, 640.
LING D, HUANG H Z, ZHANG X L, et al.Parameters estimation for mixed weibull distribution using L-M algorithm[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(4): 634-636, 640.
[13] 董力, 陆中, 周伽. 基于遗传算法的混合威布尔分布参数最小二乘估计[J]. 南京航空航天大学学报, 2019, 51(5): 711-718.
DONG L, LU Z, ZHOU J.Least Square estimation for mixed weibull distribution based on genetic algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(5): 711-718.
[14] 董胜, 韩意, 陶山山, 等. Weibull分布参数的粒子群算法估计[J]. 中国海洋大学学报(自然科学版), 2012, 42(6): 120-125.
DONG S, HAN Y, TAO S S, et al.Parameters estimation for Weibull distribution with particle swarm optimization[J]. Periodical of Ocean University of China, 2012, 42(6): 120-125.
[15] 姜海燕. 数值法与群智能算法在低风速分布模型优化中的对比研究[D]. 兰州: 兰州大学, 2015.
JIANG H Y.Comparative study of numerical methods and swarm intelligence algorithms on optimizing low wind speed distribution models[D]. Lanzhou: Lanzhou University, 2015.
[16] SHI Y, EBERHART R.A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Anchorage, AK, USA, 2002: 69-73.
[17] SHI Y, EBERHART R C.Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406). Washington, DC, USA, 2002: 1945-1950.
[18] 宋志勇, 肖怀铁, 祝依龙, 等. 末制导雷达目标与诱饵的联合参数估计和辨识[J]. 系统工程与电子技术, 2012, 34(4): 644-651.
SONG Z Y, XIAO H T, ZHU Y L, et al.Joint parameter estimation and identity recognition of targets and decoys in terminal guidance[J]. Systems engineering and electronics, 2012, 34(4): 644-651.
[19] CLERC M, KENNEDY J.The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE transactions on evolutionary computation, 2002, 6(1): 58-73.
[20] MENDES R, KENNEDY J, NEVES J.The fully informed particle swarm: simpler, maybe better[J]. IEEE transactions on evolutionary computation, 2004, 8(3): 204-210.
[21] 陈国初, 俞金寿. 增强型微粒群优化算法及其在软测量中的应用[J]. 控制与决策, 2005, 20(4): 377-381.
CHEN G C, YU J S.Enhanced particle swarm optimization and its application in soft-sensor[J]. Control and decision, 2005, 20(4): 377-381.
[22] 刘伟, 周育人. 一种改进惯性权重的PSO算法[J]. 计算机工程与应用, 2009, 45(7): 46-48, 55.
LIU W, ZHOU Y R.Modified inertia weight particle swarm optimizer[J]. Computer engineering and applications, 2009, 45(7): 46-48, 55.
[23] 王生亮, 刘根友. 一种非线性动态自适应惯性权重PSO算法[J]. 计算机仿真, 2021, 38(4): 249-253, 451.
WANG S L, LIU G Y.A nonlinear dynamic adaptive inertial weight particle swarm optimization[J]. Computer simulation, 2021, 38(4): 249-253, 451.
PDF(1983 KB)

Accesses

Citation

Detail

Sections
Recommended

/