PHOTOVOLTAIC THERMAL SPOT DETECTION METHOD WITH NOISY THERMAL INFRARED IMAGE BASED ON IMPROVED DEEPLABV3+

Chen Hui, Zhang Ao, Sun Shuai, Liang Weibin, Huang Heping

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 23-30.

PDF(2196 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2196 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 23-30. DOI: 10.19912/j.0254-0096.tynxb.2022-1048

PHOTOVOLTAIC THERMAL SPOT DETECTION METHOD WITH NOISY THERMAL INFRARED IMAGE BASED ON IMPROVED DEEPLABV3+

  • Chen Hui1, Zhang Ao1, Sun Shuai1, Liang Weibin2, Huang Heping3
Author information +
History +

Abstract

The tempered glass on the surface of photovoltaic modules will cause reflection noise in the collected thermal infrared images, which is similar to the characteristics of hot spots, which will often leads false detections in hot spot detection task. This paper proposes a lightweight DeepLabv3+ semantic segmentation model called LD-MA (Lightweight DeepLabv3+ with Multi-scale integrated Attention Mechanism) for hot spot detection. LD-MA is based on the DeepLabv3+ network architecture, First, MobileNetV2 is used as the backbone feature extraction network to reduce the amount of network parameters to improve training efficiency. Then, a multi-scale feature fusion module is designed and a CBAM attention mechanism is introduced to retain the multi-stage target features and strengthen the learning of hot spot target feature information and location information. The hot spot detection experiment was carried out on the self-built photovoltaic hot spot data set, and the results showed that the parameters of the LD-MA model were greatly reduced, and at the same time, false detection and missed detection were effectively avoided. In the test set, mIoU and mPA reached 90.82% and 94.39%.

Key words

PV modules / fault detection / semantic segmentation / hot spot / reflection noise

Cite this article

Download Citations
Chen Hui, Zhang Ao, Sun Shuai, Liang Weibin, Huang Heping. PHOTOVOLTAIC THERMAL SPOT DETECTION METHOD WITH NOISY THERMAL INFRARED IMAGE BASED ON IMPROVED DEEPLABV3+[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 23-30 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1048

References

[1] KIM K A, SEO G S, CHO B H, et al.Photovoltaic hot-spot detection for solar panel substrings using AC parameter characterization[J]. IEEE transactions on power electronics, 2016, 31(2): 1121-1130.
[2] 陈功, 蔡磊, 张琳, 等. 光伏热斑模拟建模及热成像分析[J]. 电子测量与仪器学报, 2021, 35(8): 191-197.
CHEN G, CAI L, ZHANG L, et al.Photovoltaic hotspot simulation modeling and thermal imaging analysis[J]. Journal of electronic measurement and instrumentation, 2021, 35(8): 191-197.
[3] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating PV arrays through IR thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[4] 陈文勤, 郝慧杰, 肖建, 等. 一种高精度的光伏阵列红外图像分割算法[J]. 计算机技术与发展, 2020, 30(11): 153-157.
CHEN W Q, HAO H J, XIAO J, et al.A high-precision photovoltaic array infrared image segmentation algorithm[J]. Computer technology and development, 2020, 30(11): 153-157.
[5] LIU W, ANGUELOV D, ERHAN D, et al.SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 779-788.
[7] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.
[8] ZHAO H S, SHI J P, QI X J, et al.Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 6230-6239.
[9] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4): 834-848.
[10] RONNEBERGER O, FISCHER P, BROX T.U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[11] ALI M U, KHAN H F, MASUD M, et al.A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography[J]. Solar energy, 2020, 208: 643-651.
[12] REN Y F, YU Y J, LI J, et al.Design of photovoltaic hot spot detection system based on deep learning[J]. Journal of physics: conference series, 2020, 1693(1): 012075.
[13] SU B Y, CHEN H Y, LIU K, et al.RCAG-net: residual channelwise attention gate network for hot spot defect detection of photovoltaic farms[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1-14.
[14] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[15] 魏缪宇, 卫东, 郭倩, 等. 局部异物遮挡状态下光伏单元输出特性与故障诊断方法[J]. 太阳能学报, 2021, 42(5): 260-266.
WEI M Y, WEI D, GUO Q, et al.Output characteristics and fault diagnosis method of PV unit under partial shading[J]. Acta energiae solaris sinica, 2021, 42(5): 260-266.
[16] 陈宗阳, 赵辉, 吕永胜, 等. 基于改进MobileNetV2网络的涂层表面缺陷识别方法[J]. 哈尔滨工程大学学报, 2022, 43(4): 572-579.
CHEN Z Y, ZHAO H, LYU Y S, et al.A recognition method of coating surface defects based on the improved MobileNetV2 network[J]. Journal of Harbin Engineering University, 2022, 43(4): 572-579.
[17] SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018: 4510-4520.
[18] WOO S, PARK J, LEE J Y, et al.CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[19] GUINDON B, ZHANG Y.Application of the dice coefficient to accuracy assessment of object-based image classification[J]. Canadian journal of remote sensing, 2017, 43(1): 48-61.
PDF(2196 KB)

Accesses

Citation

Detail

Sections
Recommended

/