ULTRA SHORT TREM WIND POWER PREDICTION BASED ON IAOA-VMD-LSTM

Xiao Liexi, Zhang Yu, Zhou Hui, Zhao Guanhao

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 239-246.

PDF(1921 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1921 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 239-246. DOI: 10.19912/j.0254-0096.tynxb.2022-1054

ULTRA SHORT TREM WIND POWER PREDICTION BASED ON IAOA-VMD-LSTM

  • Xiao Liexi1, Zhang Yu1,2, Zhou Hui1, Zhao Guanhao1
Author information +
History +

Abstract

In order to accurately predict wind power, an ultra-short-term wind power prediction model was proposed based on improved arithmetic optimization algorithm (IAOA), variational modal decomposition (VMD) and long short-term memory network (LSTM). The IAOA algorithm was used to optimize the key decomposition parameters k and α of VMD, and the inherent modal functions (IMF) obtained were periodic, which could improve the prediction accuracy of LSTM. Meanwhile, the IAOA algorithm was used to optimize the LSTM network parameters. Through the prediction analysis of wind power data, the results show that the IAOA-VMD-LSTM prediction model has higher prediction accuracy than other models.

Key words

wind power forecast / variational modal decomposition / long short-term memory / arithmetic optimization algorithm

Cite this article

Download Citations
Xiao Liexi, Zhang Yu, Zhou Hui, Zhao Guanhao. ULTRA SHORT TREM WIND POWER PREDICTION BASED ON IAOA-VMD-LSTM[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 239-246 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1054

References

[1] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143.
SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications of wind power forecasting[J]. High voltage technology, 2021, 47(4): 1129-1143.
[2] 唐新姿, 顾能伟, 黄轩晴, 等. 风电功率短期预测技术研究进展[J]. 机械工程学报, 2022, 58: 1-24.
TANG X Z, GU N W, HUANG X Q, et al.Research progress of short-term wind power forecasting technology[J]. Journal of mechanical engineering, 2022, 58: 1-24.
[3] 薛禹胜, 郁琛, 赵俊华, 等. 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化, 2015, 39(6): 141-150.
XU Y S, YU C,ZHAO J H,et al.A review on short-term and ultra-short-term wind power pre-diction[J]. Automation of electric power systems, 2015, 39(6): 141-150.
[4] 刘大贵, 王维庆, 张慧娥, 等. 马尔科夫修正的组合模型在新疆风电中长期可用电量预测中的应用[J]. 电网技术, 2020, 44(9): 3290-3296.
LIU D G, WANG W Q, ZHANG H E,et al.Applica-tion of markov modified combination model mid-long term available quantity of electricity forecasting in Xinjiang wind power[J]. Power system technology, 2020, 44(9): 3290-3296.
[5] 陈中慧, 王海云, 王维庆, 等. 基于数据挖掘与小波去噪的短期风电功率预测[J]. 计算机仿真, 2021, 38(9): 90-94.
CHEN Z H, WANG H Y, WANG W Q, et al.Short-term wind power prediction base on data mining and wavelet denoising[J]. Computer simulation, 2021, 38(9): 90-94.
[6] 路明, 叶林, 裴铭, 等. 风电集群有功功率模型预测协调控制策略[J]. 中国电机工程学报, 2021, 41(17): 5887-5899.
LU M, YE L, FEI M, et al.Active power model prediction and coordinated control strategy for wind power cluster[J]. Proceedings of the CSEE, 2021, 41(17): 5887-5899.
[7] 冉靖, 张智刚, 梁志峰, 等. 风电场风速和发电功率预测方法综述[J]. 数理统计与管理, 2020, 39(6): 1045-1059.
RAN J, ZHANG Z G, LIANG Z F, et al.Review of wind speed and wind power prediction methods[J]. Journal of applied statistics and management, 2020, 39(6): 1045-1059.
[8] 杨茂, 张罗宾. 基于数据驱动的超短期风电功率预测综述[J]. 电力系统保护与控制, 2019, 47(13): 171-186.
YANG M, ZHANG L B.Review on ultra-short term wind power forecasting based on data-driven approach[J]. Power system protection and control, 2019, 47(13): 171-186.
[9] 朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-BiLSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4532-4539.
ZHU L J, XUN Z H, WANG Y X, et al.Short-term power load forecasting based on CNN-BILSTM[J]. Power system technology, 2021, 45(11): 4532-4539.
[10] 李天中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205.
LI T Z, LI Y Y.Ultra-short-term wind power Prediction based on deep learning and error correction[J]. Acta energiae solaris sinica, 2021, 42(12): 200-205.
[11] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power prediction based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[12] ABUALIGAH L,DIABAT A,MIRJALILI S,et al.The arithmetic optimization algorithm[J]. Computer methods in applied mechanics and engineering, 2021, 376: 113609.
[13] 兰周新, 何庆. 多策略融合算术优化算法及其工程优化[J]. 计算机应用研究, 2022, 39(3): 758-763.
LAN Z X, HE Q.Multi-strategy fusion arithmetic optimization algorithm and its application of project optimization[J]. Application research of computers, 2022, 39(3): 758-763.
[14] 郑婷婷, 刘升, 叶旭. 自适应t分布与动态边界策略改进的算术优化算法[J]. 计算机应用研究, 2022, 39(5): 1410-1414.
ZHENG T T, LIU S, YE X.Arithmetic optimization algorithm base on adaptive t-distribution and im-proved dynamic boundary strategy[J]. Application research of computers, 2022, 39(5): 1410-1414.
[15] 李楠, 薛建凯, 舒慧生. 基于自适应t分布变异麻雀搜索算法的无人机航迹规划[J]. 东华大学学报(自然科学版), 2022, 48(3): 69-74.
LI N, XUE J K, SHU H S.A sparrow search algorithm with adaptive t distribution mutation-based path planning of unmanned aerial vehicles[J]. Journal of Donghua University (natural science), 2022, 48(3): 69-74.
[16] DRAGOMIRETSKIY K, ZOSSO D.Variational Mode Decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-541.
[17] YUAN X H, CHEN C, JIANG M, et al.Prediction inter-val of wind power using parameter optimized Beta distribution based LSTM model[J]. Applied soft computing, 2019, 82: 105550.
[18] 李春兰, 王静, 石砦, 等. 基于VMD-LSTM的触电电流提取方法研究[J]. 湖南大学学报(自然科学版), 2022, 49(2): 149-159.
LI C L, WANG J, SHI Z, et al.Research on extraction method of electric shock current based on VMD-LSTM[J]. Journal of Hunan University (natural sciences), 2022, 49(2): 149-159.
[19] ZHANG Y, XIAO L X, ZHOU H, et al.Control strategy of wind power smooth grid connection based on adaptive[J]. Journal of renewable and sustainable energy, 2022, 14(2): 023306.
PDF(1921 KB)

Accesses

Citation

Detail

Sections
Recommended

/