RESEARCH PROGRESS OF TCO FILMS FOR SILICON HETEROJUNCTION SOLAR CELLS

Wang Mengxiao, Wang Guanghong, Zhao Lei, Mo Libin, Diao Hongwei, Wang Wenjing

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 16-22.

PDF(1733 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1733 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 16-22. DOI: 10.19912/j.0254-0096.tynxb.2022-1088

RESEARCH PROGRESS OF TCO FILMS FOR SILICON HETEROJUNCTION SOLAR CELLS

  • Wang Mengxiao1,2, Wang Guanghong1,2, Zhao Lei1,2, Mo Libin1, Diao Hongwei1, Wang Wenjing1,2
Author information +
History +

Abstract

Increasing the current of the silicon heterojunction(HJT) solar cell is expected to further improve its efficiency. Transparent conductive oxide film (TCO) is an important functional layer that affects the current of the HJT solar cell. In this paper, the characteristics of TCO films are firstly introduced, including the effects of doping elements, doping ratios and preparation techniques on the film properties. Moreover, the influence of film properties on the performance of HJT cells is summarised. Finally, the latest progress and development trend of TCO film application are described. Increasing the cap layer or adopting multilayer TCO film structure is expected to improve the characteristics of TCO films and solar cell performance. It is expected to guide the optimization of TCO films characteristics, so as to further improve the efficiency of HJT solar cell and accelerate its industrialization process.

Key words

silicon heterojunction / solar cells / transparent conductive oxide films / multilayer TCO films / carrier mobility / work function

Cite this article

Download Citations
Wang Mengxiao, Wang Guanghong, Zhao Lei, Mo Libin, Diao Hongwei, Wang Wenjing. RESEARCH PROGRESS OF TCO FILMS FOR SILICON HETEROJUNCTION SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 16-22 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1088

References

[1] GERRN M A, DUNLOP E D, SIEFER G, et al.Solar cell efficiency tables (Version 61)[J]. Progress in photovoltaics: research and application, 2023, 31(1): 3-16.
[2] ALI D, BUTT M Z, MUNEER I, et al.Correlation between structural and optoelectronic properties of tin doped indium oxide thin films[J]. Optik, 2017, 128:235-246.
[3] 刘明, 王磊, 于书魁, 等. 高效硅基异质结太阳电池铟回收技术研究[J]. 太阳能学报, 2022, 43(4): 137-141.
LIU M, WANG L, YU S K, et al.Study of recovery technology for indium in efficient crystalline silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2022, 43(4): 137-141.
[4] YU J, BIAN J T, DUAN W Y, et al.Tungsten doped indium oxide film: ready for bifacial copper metallization of silicon heterojunction solar cell[J]. Solar energy materials and solar cells, 2016, 144: 359-363.
[5] PARTHIBAN S, GOKULAKRISHNAN V, RAMAMURTHI K, et al.High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications[J]. Solar energy materials and solar cells, 2009, 93(1): 92-97.
[6] GONG W B, WANG G H, GONG Y B, et al.Investigation of In2O3∶SnO2 films with different doping ratio and application as transparent conducting electrode in silicon heterojunction solar cell[J]. Solar energy materials and solar cells, 2022, 234: 111404.
[7] KHOKHAR M Q, HUSSAIN S Q, PHAM D P, et al.ITO:Zr bi-layers deposited by reactive O2 and Ar plasma with high work function for silicon heterojunction solar cells[J]. Current applied physics, 2020, 20(8): 994-1000.
[8] SHI J H, MENG F Y, BAO J, et al.Surface scattering effect on the electrical mobility of ultrathin Ce doped In2O3 film prepared at low temperature[J]. Materials letters, 2018, 225: 54-56.
[9] KANAI Y.Electrical properties of In2O3 single crystals doped with metallic donor impurity[J]. Japanese journal of applied physics, 1984, 23(1): 127.
[10] JIANG M H, LIU X Y.Structural, electrical and optical properties of Al-Ti codoped ZnO (ZATO) thin films prepared by RF magnetron sputtering[J]. Applied surface science, 2008, 255(5): 3175-3178.
[11] LEE W, SHIN S, JUNG D R, et al.Investigation of electronic and optical properties in Al-Ga codoped ZnO thin films[J]. Current applied physics, 2012, 12(3): 628-631.
[12] ABDUEV A K, AKHMEDOV A K, ASVAROV A S.The structural and electrical properties of Ga-doped and Ga, B codoped ZnO thin films: the effects of additional boron impurity[J]. Solar energy materials and solar cells, 2007, 91(4): 258-260.
[13] EO I S, HWANGBO S, KIM J T, et al.Photoluminescence of chemical solution-derived amorphous ZnO layers prepared by low-temperature process[J]. Current applied physics, 2010, 10(1): 1-4.
[14] KHATAMI S, FEKRI AVAL L, BEHZADI POUR G. Investigation of nanostructure and optical properties of flexible AZO thin films at different powers of RF magnetron sputtering[J]. Nano, 2018, 13(6): 1850062(1-9).
[15] MENG F Y, SHI J H, LIU Z X, et al.High mobility transparent conductive W-doped In2O3 thin films prepared at low substrate temperature and its application to solar cells[J]. Solar energy materials and solar cells, 2014, 122: 70-74.
[16] HUANG M, HAMEIRI Z, VENKATARAJ S, et al.Characterisation and optimisation of indium tin oxide films deposited by pulsed DC magnetron sputtering for heterojunction silicon wafer solar cell applications[J]. Energy procedia, 2013, 33: 91-98.
[17] 何永才, 董刚强, 张小燕, 等. 高效硅基异质结太阳电池的ITO薄膜研究[J]. 太阳能学报, 2020, 41(4): 1-6.
HE Y C, DONG M G, ZHANG X Y, et al.Investigation on high quality ito films used for SHJ solar cell[J]. Acta energiae solaris sinica, 2020, 41(4): 1-6.
[18] KOIDA T, FUJIWARA H, KONDO M.High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells[J]. Solar energy materials and solar cells, 2009, 93(6/7): 851-854.
[19] BARRAUD L, HOLMAN Z C, BADEL N, et al.Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2013, 115: 151-156.
[20] NISHIMURA E, OHKAWA H, SONG P, et al.Microstructures of ITO films deposited by DC magnetron sputtering with H2O introduction[J]. Thin solid films, 2003, 445(2): 235-240.
[21] 沈磊磊, 孟凡英, 石建华, 等. 高迁移率IWO薄膜特性及其在薄膜硅/晶体硅异质结太阳电池中的应用研究[J]. 太阳能学报,2018, 39(5): 1329-1334.
SHEN L L, MENG F Y, SHI J H, et al.Study of high mobility IWO thin films and its application to SHJ solar cells[J]. Acta energiae solaris sinica, 2018, 39(5): 1329-1334.
[22] 周忠信, 陈新亮, 张云龙, 等. RPD技术生长ICO:H薄膜及其在晶体硅异质结太阳电池中的应用[J]. 太阳能学报, 2021, 42(1): 50-55.
ZHOU Z X, CHEN X L, ZHANG Y L, et al.RPD-grown ICO∶H thin films for crystalline sillicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2021, 42(1): 50-55.
[23] KOBAYASHI E, WATABE Y, YAMAMOTO T, et al.Cerium oxide and hydrogen co-doped indium oxide films for high-efficiency silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2016, 149: 75-80.
[24] SHIRAKATA S, SAKEMI T, AWAI K, et al.Electrical and optical properties of large area Ga-doped ZnO thin films prepared by reactive plasma deposition[J]. Superlattices and microstructures, 2006, 39(1/2/3/4): 218-228.
[25] HUANG W, SHI J H, LIU Y Y, et al.Effect of crystalline structure on optical and electrical properties of IWOH films fabricated by low-damage reactive plasma deposition at room temperature[J]. Journal of alloys and compounds, 2020, 843: 155151.
[26] KOIDA T.Environmental and thermal stability of high-mobility In2O3-based transparent conducting oxide films fabricated at low process temperatures[C]//Research Center for Photovoltaics, AIST, 1st SHJ Workshop. Shanghai, China, 2018.
[27] KOIDA T, NOMOTO J.Effective mass of high-mobility In2O3-based transparent conductive oxides fabricated by solid-phase crystallization[J]. Physical review materials, 2022, 6(5): 055401.
[28] KOIDA T, KONDO M, TSUTSUMI K, et al.Hydrogen-doped In2O3 transparent conducting oxide films prepared by solid-phase crystallization method[J]. Journal of applied physics, 2010, 107(3): 033514.
[29] LACHAUME R, FAVRE W, SCHEIBLIN P, et al.Influence of a-Si:H/ITO interface properties on performance of heterojunction solar cells[J]. Energy procedia, 2013, 38: 770-776.
[30] SCHERG-KURMES H, KÖRNER S, RING S, et al. High mobility In2O3:H as contact layer for a-Si:H/c-Si heterojunction and μc-Si:H thin film solar cells[J]. Thin solid films, 2015, 594: 316-322.
[31] KIM S, IFTIQUAR S M, LEE D, et al.Improvement in front-contact resistance and interface passivation of heterojunction amorphous/crystalline silicon solar cell by hydrogen-diluted stacked emitter[J]. IEEE journal of photovoltaics, 2016, 6(4): 837-845.
[32] WU Z P, DUAN W Y, LAMBERTZ A, et al.Low-resistivity p-type a-Si:H/AZO hole contact in high-efficiency silicon heterojunction solar cells[J]. Applied surface science, 2021, 542: 148749.
[33] HUANG W, SHI J H, LIU Y Y, et al.High-performance Ti and W co-doped indium oxide films for silicon heterojunction solar cells prepared by reactive plasma deposition[J]. Journal of power sources, 2021, 506: 230101.
[34] QIU D P, DUAN W Y, LAMBERTZ A, et al.Effect of oxygen and hydrogen flow ratio on indium tin oxide films in rear-junction silicon heterojunction solar cells[J]. Solar energy, 2022, 231: 578-585.
[35] RU X N, QU M H, WANG J Q, et al.25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers[J]. Solar energy materials and solar cells, 2020, 215: 110643.
[36] CRUZ A, ERFURT D, WAGNER P, et al.Optoelectrical analysis of TCO+Silicon oxide double layers at the front and rear side of silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2022, 236: 111493.
[37] ZHAO L, ZHOU C L, LI H L, et al.Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation[J]. Solar energy materials and solar cells, 2008, 92(6): 673-681.
[38] HUSSAIN S Q, KIM S, AHN S, et al.Influence of high work function ITO:Zr films for the barrier height modification in a-Si:H/c-Si heterojunction solar cells[J]. Solar energy materials and solar cells, 2014, 122: 130-135.
[39] ZHAO L, ZHOU C L, LI H L, et al.Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation[J]. Physica status solidi (a), 2008, 205(5): 1215-1221.
[40] BIVOUR M, REICHEL C, HERMLE M, et al.Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells[J]. Solar energy materials and solar cells, 2012, 106: 11-16.
[41] STANNOWSKI B, ERFURT D, CRUZ A.TCOs for SHJ solar cells[C]//3rd International Workshop on SHJ Solar cell, Web. Meeting, 2020.
[42] BÄTZNER D L, PAPET P, LEGRADIC B, et al. Alleviating performance and cost constraints in silicon heterojunction cells with HJT 2.0[C]//2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). Chicago, USA, 2020: 1471-1474.
[43] LUDERER C, TUTSCH L, MESSMER C, et al.Influence of TCO and a-Si:H doping on SHJ contact resistivity[J]. IEEE journal of photovoltaics, 2021, 11(2): 329-336.
[44] CHRIS X X.Micro-crystalline silicon oxide front contact layer for silicon heterojunction solar cells[C]//2nd International Workshop on SHJ Solar Cells. Chengdu, China, 2019.
[45] TOHSOPHON T, DABIRIAN A, DE WOLF, et al.Environmental stability of high-mobility indium-oxide based transparent electrodes[J]. APL materials, 2015, 3(11): 116105.
PDF(1733 KB)

Accesses

Citation

Detail

Sections
Recommended

/