CONTROL STRATEGY OF PV POWER PLANTS PARTICIPATING IN PRIMARY FREQUENCY CONTROL UNDER PARTIAL SHADOW

Yang Lihui, Wang Shaokang, Shi Jinzhu, Yang Hao

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 72-81.

PDF(2568 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2568 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 72-81. DOI: 10.19912/j.0254-0096.tynxb.2022-1102

CONTROL STRATEGY OF PV POWER PLANTS PARTICIPATING IN PRIMARY FREQUENCY CONTROL UNDER PARTIAL SHADOW

  • Yang Lihui, Wang Shaokang, Shi Jinzhu, Yang Hao
Author information +
History +

Abstract

Aiming at the problem that PV power station with the control strategy of photovoltaic virtual synchronous generator (PV-VSG) participating in power system primary frequency control, and considering the partial shadow conditions, an active power reserve PV-VSG control strategy based on the adaptive virtual inertia is proposed. The particle swarm optimization algorithm is used to realize the maximum power point tracking and de-loading operation of PV array for grid frequency regulation under partial shadow conditions, and the virtual inertia is regulated adaptively according to the characteristics of grid frequency under different stages in the variation process, so that the frequency overshoot can be reduced and the recovery speed can be accelerated. Furthermore, in order to reasonably distribute the active power among PV-VSGs in the power plant under frequency regulation mode, an active power distribution strategy based on the equal adjustable capacity ratio is adopted, which makes each PV unit in the plant has the same active power margin for frequency regulation, so the over-regulation problem of some PV units can be avoided. Finally, simulation analyses are carried out by taking a 10 MW solar power plant participating in primary frequency regulation as an example to verify the effectiveness of the proposed control strategy.

Key words

PV power station / frequency control / particle swarm optimization / virtual inertia control / electric power distribution

Cite this article

Download Citations
Yang Lihui, Wang Shaokang, Shi Jinzhu, Yang Hao. CONTROL STRATEGY OF PV POWER PLANTS PARTICIPATING IN PRIMARY FREQUENCY CONTROL UNDER PARTIAL SHADOW[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 72-81 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1102

References

[1] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-360.
LYU Z P, SHENG W X, LIU H T, et al.Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360.
[2] YAN G G, LIANG S, JIA Q, et al.Novel adapted de-loading control strategy for PV generation participating in grid frequency regulation[J]. The journal of engineering, 2019, 2019(16): 3383-3387.
[3] BAO G Q, TAN H T, DING K, et al.A novel photovoltaic virtual synchronous generator control technology without energy storage systems[J]. Energies, 2019, 12(12): 2240-2253.
[4] 贾祺, 严干贵, 张善峰, 等. 多光伏发电参与电网频率调节的动态协调机理[J]. 电力系统自动化, 2019, 43(24): 59-66.
JIA Q, YAN G G, ZHANG S F, et al.Dynamic coordination mechanism of grid frequency regulation with multiple photovoltaic generation units[J]. Automation of electric power systems, 2019, 43(24): 59-66.
[5] ZHANG X, GAO Q, HU Y H, et al.Active power reserve photovoltaic virtual synchronization control technology[J]. Chinese journal of electrical engineering, 2020, 6(2): 1-6.
[6] PENG Q, YANG Y H, LIU T Q, et al.Coordination of virtual inertia control and frequency damping in PV systems for optimal frequency support[J]. CPSS transactions on power electronics and applications, 2020, 5(4): 305-316.
[7] 王振雄, 易皓, 卓放, 等. 应用于光伏微网的一种虚拟同步发电机结构及其动态性能分析[J]. 中国电机工程学报, 2017, 37(2): 444-454.
WANG Z X, YI H, ZHUO F, et al.A hardware structure of virtual synchronous generator in photovoltaic microgrid and its dynamic performance analysis[J]. Proceedings of the CSEE, 2017, 37(2): 444-454.
[8] GUO Y, CHEN L J, LI K, et al.A novel control strategy for stand-alone photovoltaic system based on virtual synchronous generator[C]//IEEE Power and Energy Society General Meeting. Boston, USA, 2016.
[9] 张海峥, 张兴, 李明, 等. 一种有功备用式光伏虚拟同步控制策略[J]. 电网技术, 2019, 43(2): 514-520.
ZHANG H Z, ZHANG X, LI M, et al.A photovoltaic virtual synchronous generator control strategy based on active power reserve[J]. Power system technology, 2019, 43(2): 514-520.
[10] 张伟超. 含虚拟同步化新能源的电力系统有功功率和频率控制[D]. 北京: 华北电力大学(北京), 2021.
ZHANG W C.Active power and frequency control in power systems incorporating virtual synchronous renewables[D]. Beijing: North China Electric Power University(Beijing), 2021.
[11] LYU X, XU Z, ZHAO J, et al.Advanced frequency support strategy of photovoltaic system considering changing working conditions[J]. IET generation, transmission & distribution, 2018, 12(2): 363-370.
[12] HOKE A F, SHIRAZI M, CHAKRABORTY S, et al.Rapid active power control of photovoltaic systems for grid frequency support[J]. IEEE journal of emerging and selected topics in power electronics, 2017, 5(3): 1154-1163.
[13] VERMA P, KAUR T, KAUR R.Power control strategy of an integrated PV system for active power reserve under dynamic operating conditions[J]. Sustainable energy technologies and assessments, 2021, 45: 101066.
[14] LIU Y, XIN H H, WANG Z, et al.Power control strategy for photovoltaic system based on the newton quadratic interpolation[J]. IET renewable power generation, 2014, 8(6): 611-620.
[15] BATZELIS E I, KAMPITSIS G E, PAPATHANASSIOU S A.Power reserves control for PV systems with real-time MPP estimation via curve fitting[J]. IEEE transactions on sustainable energy, 2017, 8(3): 1269-1280.
[16] 钟诚, 周顺康, 严干贵, 等. 基于变减载率的光伏发电参与电网调频控制策略[J]. 电工技术学报, 2019,34(5): 1013-1024.
ZHONG C, ZHOU S K, YAN G G, et al.A new frequency regulation control strategy for photovoltaic power plant based on variable power reserve level control[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1013-1024.
[17] 夏超鹏. 虚拟同步光伏电站参与电网动态调控策略研究[D]. 南京: 东南大学, 2018.
XIA C P.Research on the dynamic regulation strategy of virtual synchronous generator based photovoltaic power plant [D]. Nanjing: Southeast University, 2018.
[18] 聂莉. 局部阴影下光伏发电系统MPPT控制策略研究[D]. 重庆: 重庆大学, 2019.
NIE L.Research on MPPT control strategy of photovoltaic power generation system under partial shadow[D]. Chongqing: Chongqing University, 2019.
[19] AHMAD R, MURTAZA A F, SHER H A.Power tracking techniques for efficient operation of photovoltaic array in solar applications-a review[J]. Renewable & sustainable energy reviews, 2019, 101: 82-102.
[20] 杭慧芳. 基于混合储能的光伏发电系统的控制策略研究[D]. 大连: 大连理工大学, 2020.
HANG H F.Research on control strategy of photovoltaic power generation system based on hybrid energy storage [D]. Dalian: Dalian University of Technology, 2020.
[21] 花赟昊, 朱武, 靳一奇, 等. 基于自适应变异粒子群算法的光伏MPPT控制研究[J]. 太阳能学报, 2022, 43(4): 219-225.
HUA Y H, ZHU W, JIN Y Q, et al.Research on photovoltaic MPPT control based on adaptive mutation particle swarm optimization algorithm[J]. Acta energiae solaris sinica, 2022, 43(4): 219-225.
[22] 张金平, 汪宁渤, 黄蓉, 等. 高渗透率光伏参与电力系统调频研究综述[J]. 电力系统保护与控制, 2019, 47(15): 179-186.
ZHANG J P, WANG N B, HUANG R, et al.Survey on frequency regulation technology of power grid by high-penetration photovoltaic[J]. Power system protection and control, 2019, 47(15): 179-186.
[23] ZHONG C, ZHOU Y, ZHANG X P, et al.Flexible power-point-tracking-based frequency regulation strategy for PV system[J]. IET renewable power generation, 2020, 14(10): 1797-1807.
[24] 赵晋泉, 孙中昊, 杨余华, 等. 分布式光伏参与调频辅助服务交易机制研究[J]. 全球能源互联网, 2020, 3(5): 477-486.
ZHAO J Q, SUN Z H, YANG Y H, et al.Study on frequency regulation ancillary service trading mechanisms for distributed photovoltaic generation[J]. Journal of global energy interconnection, 2020, 3(5): 477-486.
[25] 任自盼, 鲁宝春, 赵亚龙, 等. 光伏虚拟同步发电机建模与仿真研究[J]. 电力系统保护与控制, 2019, 47(13): 92-99.
REN Z P, LU B C, ZHAO Y L, et al.Research on modeling and simulation of photovoltaic virtual synchronous generator[J]. Power system protection and control, 2019, 47(13): 92-99.
[26] 李东东, 朱钱唯, 程云志, 等. 基于自适应惯量阻尼综合控制算法的虚拟同步发电机控制策略[J]. 电力自动化设备, 2017, 37(11): 72-77.
LI D D, ZHU Q W, CHENG Y Z, et al.Control strategy of virtual synchronous generator based on self-adaptive rotor inertia and damping combination control algorithm[J]. Electric power automation equipment, 2017, 37(11): 72-77.
[27] 程子霞, 于洋, 柴旭峥. 基于协同自适应控制的光储VSG运行控制研究[J]. 电力系统保护与控制, 2020, 48(24): 79-85.
CHENG Z X, YU Y, CHAI X Z.Research on operation control of a photovoltaic system with storage VSG based on cooperative adaptive control[J]. Power system protection and control, 2020, 48(24): 79-85.
[28] 温春雪, 陈丹, 胡长斌, 等. 微网逆变器的VSG转动惯量和阻尼系数自适应控制[J]. 电力系统自动化, 2018, 42(17): 120-126.
WEN C X, CHEN D, HU C B, et al.Self-adaptive control of rotational inertia and damping coefficient of VSG for converters in microgrid[J]. Automation of electric power systems, 2018, 42(17): 120-126.
[29] 张兴, 朱德斌, 徐海珍. 分布式发电中的虚拟同步发电机技术[J]. 电源学报, 2012(3): 1-6.
ZHANG X, ZHU D B, XU H Z.Review of virtual synchronous generator technology in distributed generation[J]. Journal of power supply, 2012(3): 1-6.
[30] 马立凡. 光伏电站多逆变器有功功率协调控制策略研究[D]. 天津: 天津大学, 2017.
MA L F.Coordinated control strategy of active power in multi inverter of photovoltaic power station [D]. Tianjin: Tianjin University, 2017.
[31] 王利猛, 孙珮然, 韩凯, 等. 计及备用容量的光伏发电系统等比例减载调频控制技术研究[J]. 可再生能源, 2020, 38(9): 1203-1209.
WANG L M, SUN P R, HAN K, et al.The control strategy of frequency regulation by proportional deloading for a PV system considering available reserves[J]. Renewable energy resources, 2020, 38(9): 1203-1209.
PDF(2568 KB)

Accesses

Citation

Detail

Sections
Recommended

/