POWER PREDICTION METHOD OF NON-UNIFORM WIND FARM LAYOUT BASED ON GRAPH NEURAL NETWORK

Liu Deao, Dong Minggang, Ye Wei, Wang Yan, Gan Guojun

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 279-286.

PDF(2276 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2276 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 279-286. DOI: 10.19912/j.0254-0096.tynxb.2022-1106

POWER PREDICTION METHOD OF NON-UNIFORM WIND FARM LAYOUT BASED ON GRAPH NEURAL NETWORK

  • Liu Deao1, Dong Minggang1,2, Ye Wei1, Wang Yan1, Gan Guojun1
Author information +
History +

Abstract

Aiming at the problems of low accuracy and poor interpretability of the existing power prediction methods of non-uniform wind farm layout, we propose an improved physics-induced graph neural network (IPGNN) model to predict the power output of non-uniform wind farms. Firstly, IPGNN constructs a physical information basis function based on three-dimensional Gaussian wake model, which can more accurately reflect the wake interaction between wind turbines in non-uniform wind farms; Secondly, IPGNN designs a set of graph neural network update strategies based on the message passing framework. In the graph neural network edge update strategy, combined with the attention mechanism, the physical information basis function is used as the weight update function, which enhances the interpretability of the model. The simulation experiments of non-uniform wind farms with different numbers of wind turbines show that IPGNN model has a good prediction effect compared with PGNN model based on one-dimensional wake model and typical data-driven model. For non-uniform wind farms with 20 wind turbines, the MAPE of power generation prediction is 3.92%. It is an effective method for power generation prediction of non-uniform wind farm layout.

Key words

deep learning / graph neural network / wind power / wind farm layout / numerical simulation

Cite this article

Download Citations
Liu Deao, Dong Minggang, Ye Wei, Wang Yan, Gan Guojun. POWER PREDICTION METHOD OF NON-UNIFORM WIND FARM LAYOUT BASED ON GRAPH NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 279-286 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1106

References

[1] WISER R, LANTZ E, MAI T, et al.Wind vision: a new era for wind power in the United States[J]. The electricity journal, 2015, 28(9): 120-132.
[2] Global Wind Energy Council. GWEC global wind report[R]. Brussels, Belgium: Global Wind Energy Council, 2022. 1-148.
[3] BARTHELMIE R J, HANSEN K, FRANDSEN S T, et al.Modelling and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind energy, 2009, 12(5): 431-444.
[4] CHEN Y, LI H, JIN K, et al.Wind farm layout optimization using genetic algorithm with different hub height wind turbines[J]. Energy conversion and management, 2013, 70: 56-65.
[5] MOSETTI G, POLONI C, DIVIACCO B.Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[J]. Journal of wind engineering and industrial aerodynamics, 1994, 51(1): 105-116.
[6] HOU P, HU W H, SOLTANI M, et al.Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm[J]. IEEE transactions on sustainable energy, 2015, 6(4): 1272-1282.
[7] WANG Y, LIU H, LONG H, et al.Differential evolution with a new encoding mechanism for optimizing wind farm layout[J]. IEEE transactions on industrial informatics, 2017, 14(3): 1040-1054.
[8] 袁桂丽, 吴振民, 刘骅骐, 等. 基于深度置信网络的短期风电功率预测[J]. 太阳能学报, 2022, 43(2): 451-457.
YUAN G L, WU Z M, LIU H Q, et al.Short-term wind power prediction based on deep belief network[J]. Acta energiae solaris sinica, 2022, 43(2): 451-457.
[9] 苏向敬, 周汶鑫, 李超杰, 等. 基于双重注意力LSTM神经网络的可解释海上风电出力预测[J]. 电力系统自动化, 2022, 46(7): 141-151.
SU X J, ZHOU W X, LI C J, et al.Interpretable offshore wind power output forecasting based on long short-term memory neural network with dual-stage attention[J]. Automation of electric power systems, 2022, 46(7): 141-151.
[10] PARK J Y, PARK J K.Physics-induced graph neural network: an application to wind-farm power estimation[J]. Energy, 2019, 187(1): 115883-115897.
[11] JENSEN N O.A note on wind generator interaction[M]. Roskilde, Denmark: Riso National Laboratory, 1983.
[12] TAO S Y, XU Q S, FEIJÓO A, et al. Bi-hierarchy optimization of a wind farm considering environmental impact[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2515-2524.
[13] 宋翌蕾, 田琳琳, 赵宁. 风力机三维尾流模型的提出与校核[J]. 太阳能学报, 2021, 42(2): 129-135.
SONG Y L, TIAN L L, ZHAO N.Proposal and validation of a new 3D wake model for wind turbine[J]. Acta energiae solaris sinica, 2021, 42(2): 129-135.
[14] SUN H Y, YANG H X.Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model[J]. Renewable energy, 2020, 147: 192-203.
[15] FLEMING P, KING J, BAY C J, et al.Overview of FLORIS updates[J]. Journal of physics: conference series, 2020, 1618(2): 022028.
[16] KING J, FLEMING P, KING R, et al.Control-oriented model for secondary effects of wake steering[J]. Wind energy science, 2021, 6(3): 701-714.
[17] FARRELL A, KING J, DRAXL C, et al.Design and analysis of a wake model for spatially heterogeneous flow[J]. Wind energy science, 2021, 6(3): 737-758.
[18] GUO X J, ZHANG Y, YAN J T, et al.Integrated dynamics response analysis for IEA 10-MW spar floating offshore wind turbine[J]. Journal of marine science and engineering, 2022, 10(4): 542-559.
[19] STANLEY A P J, NING A. Coupled wind turbine design and layout optimization with nonhomogeneous wind turbines[J]. Wind energy science, 2019, 4(1): 99-114.
PDF(2276 KB)

Accesses

Citation

Detail

Sections
Recommended

/