POWER OPTIMIZATION LQG AND SLIDING MODE CONTROL OF WAVE POWER SYSTEM

Huang Yi, Yang Junhua, Lin Huijin, Liang Haohui, Luo Qi, Wang Chaofan

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 296-301.

PDF(2360 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2360 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 296-301. DOI: 10.19912/j.0254-0096.tynxb.2022-1109

POWER OPTIMIZATION LQG AND SLIDING MODE CONTROL OF WAVE POWER SYSTEM

  • Huang Yi1, Yang Junhua1, Lin Huijin2, Liang Haohui1, Luo Qi1, Wang Chaofan1
Author information +
History +

Abstract

Considering the physical constraints of float position and velocity in direct drive wave power generation system, a constrained feedback power optimization scheme was proposed based on linear quadratic Gaussian(LQG). In order to formulate the state space model of the system, the hydrodynamics tools was used to obtain the radiation force data. The standard Kalman filter was used to obtain the full state information of the system to construct the minimum performance index function and calculate the optimal state feedback gain. The sliding mode controller was designed, in which system modelling mismatch losses was compensated. Used Lyapunov judgement, the system stability was proved. Compensate the state deviation and power loss when the system model is mismatched. The feedback gain was calculated off-line and the sliding mode variable structure control parameters were adjusted to reduce the complexity of the control strategy. Simulation results show that the proposed control strategy has good dynamic performance and robustness, can improve the system output power without violating physical constraints.

Key words

wave power / wave energy conversion / sliding mode control / model mismatch / LQG

Cite this article

Download Citations
Huang Yi, Yang Junhua, Lin Huijin, Liang Haohui, Luo Qi, Wang Chaofan. POWER OPTIMIZATION LQG AND SLIDING MODE CONTROL OF WAVE POWER SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 296-301 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1109

References

[1] 肖曦, 摆念宗, 康庆, 等. 波浪发电系统发展及直驱式波浪发电系统研究综述[J]. 电工技术学报, 2014, 29(3): 1-11.
XIAO X, BAI N Z, KANG Q, et al.A review of the development of wave power system and the research on direct-drive wave power system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 1-11.
[2] 张亚群, 盛松伟, 游亚戈, 等. 波浪能发电技术应用发展现状及方向[J]. 新能源进展, 2019, 7(4): 374-378.
ZHANG Y Q, SHENG S W, YOU Y G, et al.Development status and application direction of wave energy generation technology[J]. Advances in new and renewable energy, 2019, 7(4): 374-378.
[3] MAREI M I, MOKHTAR M, EL-SATTAR A A. MPPT strategy based on speed control for AWS-based wave energy conversion system[J]. Renewable energy, 2015, 83: 305-317.
[4] 肖晓龙, 肖龙飞, 杨立军. 串联直驱浮子式波浪能发电装置能量捕获研究[J]. 太阳能学报, 2018, 39(2): 398-405.
XIAO X L, XIAO L F, YANG L J.Energy harvesting study of series direct driven float wave energy converter[J]. Acta energiae solaris sinica, 2018, 39(2): 398-405.
[5] 黄秀秀, 杨金明, 陈渊睿, 等. 基于PCHD模型的振荡浮子式波浪发电系统的无源控制[J]. 电测与仪表, 2019, 56(7): 107-112.
HUANG X X, YANG J M, CHEN Y R, et al.Passivity based control of oscillating buoy wave power system based on PCHD model[J]. Electrical measurement & instrumentation, 2019, 56(7): 107-112.
[6] 康庆, 肖曦, 聂赞相, 等. 直驱型海浪发电系统输出功率优化控制策略[J]. 电力系统自动化, 2013, 37(3): 24-29.
KANG Q, XIAO X, NIE Z X, et al.An optimal control strategy for output power of the directly driven wave power generation system[J]. Automation of electric power systems, 2013, 37(3): 24-29.
[7] 李蒙, 李雪临, 王兵振, 等. 浮力摆式波浪能发电装置结构设计与强度优化[J]. 海洋技术学报, 2016, 35(5): 85-89.
LI M, LI X L, WANG B Z, et al.Structural design and strength optimization for buoyant pendulum wave power generation device[J]. Journal of ocean technology, 2016, 35(5): 85-89.
[8] 蔡浩然, 杨俊华, 林巧梅, 等. 傅氏分析反步法直驱型海浪发电系统功率优化控制[J]. 电测与仪表, 2018, 55(18): 57-63.
CAI H R, YANG J H, LIN Q M, et al.An optimal control strategy for output power of directly driven wave generation system based on Fourier analysis back-stepping method[J]. Electrical measurement & instrumentation, 2018, 55(18): 57-63.
[9] 黄俊豪, 杨俊华, 蔡浩然, 等. 基于WFT的直驱式波浪能发电系统自抗扰功率优化控制[J]. 可再生能源, 2021, 39(9): 1271-1278.
HUANG J H, YANG J H, CAI H R, et al.Optimal power control of active disturbance rejection for direct drive wave power generation system based on WFT[J]. Renewable energy resources, 2021, 39(9): 1271-1278.
[10] CANTARELLAS A M, REMON D, RODRIGUEZ P.Adaptive vector control of wave energy converters[J]. IEEE transactions on industry applications, 2017, 53(3): 2382-2391.
[11] LI G A, BELMONT M R.Model predictive control of sea wave energy converters-part I: a convex approach for the case of a single device[J]. Renewable energy, 2014, 69: 453-463.
[12] ZHAN S Y, NA J, LI G, et al.Adaptive model predictive control of wave energy converters[J]. IEEE transactions on sustainable energy, 2020, 11(1): 229-238.
[13] 卢思灵, 杨俊华, 沈辉, 等. 直驱式波浪发电系统的经济模型预测控制[J]. 电测与仪表, 2021, 58(3): 131-138.
LU S L, YANG J H, SHEN H, et al.Economic model predictive control of direct-drive wave power generation systems[J]. Electrical measurement & instrumentation, 2021, 58(3): 131-138.
[14] YU Z, FALNES J.State-space modelling of a vertical cylinder in heave[J]. Applied ocean research, 1995, 17(5): 265-275.
[15] KAYACAN E, PESCHEL J.Robust model predictive control of systems by modeling mismatched uncertainty[J]. IFAC-PapersOnLine, 2016, 49(18): 265-269.
PDF(2360 KB)

Accesses

Citation

Detail

Sections
Recommended

/