SPH-FEM COUPLING CALCULATION OF WATER DROPLETS IMPACT ON WIND TURBINE BLADES AT HIGH VELOCITY

Zhou Wenping, Yang Maoli, Ma Guilan

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 303-309.

PDF(3890 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3890 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 303-309. DOI: 10.19912/j.0254-0096.tynxb.2022-1120

SPH-FEM COUPLING CALCULATION OF WATER DROPLETS IMPACT ON WIND TURBINE BLADES AT HIGH VELOCITY

  • Zhou Wenping1, Yang Maoli1, Ma Guilan2
Author information +
History +

Abstract

The present paper develops an SPH-FEM coupling computational model for simulating water droplet impact on wind turbine blades. Further, the dynamic process and material impact response of water droplets impact on the coating surface at high velocity are calculated. The results show that there are two contact force peaks after the impact of the water droplets. The first peak is caused by the high pressure formed when the water droplet is compressed, which will form high stresses on the coating surface, but the effective plastic strain is not significant. The second peak is the lateral diffusion caused by the release of high pressure inside the water droplet, which will cause a large plastic deformation on the coating surface and become the main factor of blade leading edge damage. The increase in water droplet velocity or decrease in the coating material thickness leads to a larger contact force, with a larger area of plastic deformation and plastic strain on the coating surface.

Key words

wind turbine blades / coating material / dynamic response / water droplet / high velocity impact

Cite this article

Download Citations
Zhou Wenping, Yang Maoli, Ma Guilan. SPH-FEM COUPLING CALCULATION OF WATER DROPLETS IMPACT ON WIND TURBINE BLADES AT HIGH VELOCITY[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 303-309 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1120

References

[1] 杨伟, 段亚范, 东雪青, 等. 带翼型叶尖小翼对叶尖表面速度的影响[J]. 太阳能学报, 2021, 42(11): 260-264.
YANG W, DUAN Y F, DONG X Q, et al.Effect of tip winglet with airfoil on tip surface velocity[J]. Acta energiae solaris sinica, 2021, 42(11): 260-264.
[2] MACDONALD H, INFIELD D, NASH D H, et al.Mapping hail meteorological observations for prediction of erosion in wind turbines[J]. Wind energy, 2016, 19(4): 777-784.
[3] VERMA A S, CASTRO S G P, JIANG Z, et al. Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditions: a parametric study[J]. Composite structures, 2020, 241: 112096.
[4] LI R, NINOKATA H, MORI M.A numerical study of impact force caused by liquid droplet impingement onto a rigid wall[J]. Progress in nuclear energy, 2011, 53(7): 881-885.
[5] ADLER W F. Waterdrop impact modeling[J]. Wear, 1995, 186/187(part 2): 341-351.
[6] FRAISSE A, BECH J I, BORUM K K, et al.Impact fatigue damage of coated glass fibre reinforced polymer laminate[J]. Renewable energy, 2018, 126: 1102-1112.
[7] 张志春, 强洪夫, 高巍然. SPH-FEM接触算法在冲击动力学数值计算中的应用[J]. 固体力学学报, 2011, 32(3): 319-324.
ZHANG Z C, QIANG H F, GAO W R.Application of SPH-FEM contact algorithm in impact dynamics simulation[J]. Chinese journal of solid mechanics, 2011, 32(3): 319-324.
[8] STELLINGWERF R F, WINGATE C A.Impact modeling with smooth particle hydrodynamics[J]. International journal of impact engineering, 1993, 14(1-4): 707-718.
[9] SKILLEN A, LIND S, STANSBY P K, et al.Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction[J]. Computer methods in applied mechanics and engineering, 2013, 265(9): 163-173.
[10] KEEGAN M H.Wind turbine blade leading edge erosion: an investigation of rain droplet and hailstone impact induced damage mechanisms[D]. Glasgow: University of Strathclyde, 2014.
[11] ASTRID B.Investigation of droplet erosion for offshore wind turbine blades[J]. Annales academiae medicae stetinensis, 2014, 59(1): 170-171.
[12] 龙厅. 模拟流固耦合问题的FEM-SPH耦合算法研究[D]. 长沙: 湖南大学, 2017.
LONG T.Study on FEM-SPH coupling method for simulation of fluid structure interaction problems[D]. Changsha: Hunan University, 2017.
[13] 程兵, 汪海波, 宗琦. 基于SPH-FEM耦合法切缝药包爆破机理数值模拟[J]. 含能材料, 2020, 28(4): 300-307.
CHENG B, WANG H B, ZONG Q.Numerical simulation on blasting mechanism of slotted cartridge based on coupled SPH-FEM algorithm[J]. Chinese journal of energetic materials, 2020, 28(4): 300-307.
[14] 纪冲, 龙源, 方向. 基于FEM-SPH耦合法的弹丸侵彻钢纤维混凝土数值模拟[J]. 振动与冲击. 2010, 29(7): 69-74.
JI C, LONG Y, FANG X.Numerical simulation for projectile penetrating steel fiber reinforced concrete with FEM-SPH coupling algorithm[J]. Journal of vibration and shock, 2010, 29(7): 69-74.
[15] 马利, 陶伟明, 郭乙木, 等. SPH耦合有限元方法的水射流弹塑性碰撞模拟[J]. 浙江大学学报(工学版). 2008, 42(2): 259-263.
MA L, TAO W M, GUO Y M, et al.Elastic/plastic impact simulation of water jet using smoothed particle hydrodynamics and finite element method[J]. Journal of Zhejiang University (engineering science), 2008, 42(2): 259-263.
[16] MONAGHAN J J, LATTANZIO J C.A refined particle method for astrophysical problems[J]. Astronomy and astrophysics, 1985, 149(1): 135-143.
[17] LIU M B, LIU G R.Smoothed particle hydrodynamics (SPH): an overview and recent developments[J]. Archives of computational methods in engineering, 2010, 17(1): 25-76.
[18] 王检耀, 刘铸永, 洪嘉振. 基于两种接触模型的柔性体间多次微碰撞问题研究[J]. 振动与冲击, 2018, 37(11): 202-206.
WANG J Y, LIU Z Y, HONG J Z.Multi-micro impact among flexible bodies using two contact models[J]. Journal of vibration and shock, 2018, 37(11): 202-206.
[19] LITTELL J D, RUGGERI C R, GOLDBERG R K, et al.Measurement of epoxy resin tension, compression, and shear stress-strain curves over a wide range of strain rates using small test specimens[J]. Journal of aerospace engineering, 2008, 21(3): 162-173.
[20] 冯鹏, 强翰霖, 叶列平. 材料、 构件、 结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3): 36-46.
FENG P, QIANG H L, YE L P.Discussion and definition on yield points of materials, members and structures[J]. Engineering mechanics, 2017, 34(3): 36-46.
[21] ZHANG R, ZHANG B, LYU Q, et al.Effects of droplet shape on impact force of low-speed droplets colliding with solid surface[J]. Experiments in fluids, 2019, 60: 64.
PDF(3890 KB)

Accesses

Citation

Detail

Sections
Recommended

/