EFFICIENCY OPTIMIZATION CONTROL STRATEGY FOR LOW-VOLTAGE DC GRID-CONNECTED DISTRIBUTED PHOTOVOLTAIC WITH MODULAR CASCADED STRUCTURE

Wu Zezhi, Wang Chaoliang, Zhang Jing, Chen Songsong, Chen Ke

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 91-99.

PDF(2509 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2509 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 91-99. DOI: 10.19912/j.0254-0096.tynxb.2022-1134

EFFICIENCY OPTIMIZATION CONTROL STRATEGY FOR LOW-VOLTAGE DC GRID-CONNECTED DISTRIBUTED PHOTOVOLTAIC WITH MODULAR CASCADED STRUCTURE

  • Wu Zezhi1, Wang Chaoliang2, Zhang Jing1, Chen Songsong1, Chen Ke1
Author information +
History +

Abstract

In order to solve the disadvantage of the output power drop of distributed photovoltaics under partial shadow, an improved efficiency optimization strategy for low-voltage DC grid-connected distributed photovoltaic system with modular cascaded structure is proposed. This paper focuses on analyzing the output characteristics of submodules based on distributed maximum power point tracking series output, which shows that the system can output the maximum power in a certain voltage range, and then compares the transmission power loss of the voltage fluctuates with specified range and voltage is balanced through theoretical analysis. Finally, a system-level simulation model is built in Matlab/Simulink environment. The results show that the proposed efficiency optimization control strategy can effectively reduce the transmission power loss and increase the power generation efficiency without increasing the hardware cost of the system.

Key words

photovoltaic power / power mismatch / distributed maximum power point tracking / voltage balancing / low-voltage DC grid-connected / efficiency optimization

Cite this article

Download Citations
Wu Zezhi, Wang Chaoliang, Zhang Jing, Chen Songsong, Chen Ke. EFFICIENCY OPTIMIZATION CONTROL STRATEGY FOR LOW-VOLTAGE DC GRID-CONNECTED DISTRIBUTED PHOTOVOLTAIC WITH MODULAR CASCADED STRUCTURE[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 91-99 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1134

References

[1] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
WANG J, YU B D, WANG C Y, et al.New advancements of building integrated photovoltaic/thermal system(BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[2] 江亿. 光储直柔:助力实现零碳电力的新型建筑配电系统[J]. 暖通空调, 2021, 51(10): 1-12.
JIANG Y.PSDF(photovoltaic, storage, DC, flexible): a new type of building power distribution system for zero carbon power system[J]. Heating ventilating & air conditioning, 2021, 51(10): 1-12.
[3] 艾永乐, 丁剑英, 刘群峰, 等. 计及负荷需求响应的并网家用光伏系统协同优化调度[J]. 太阳能学报, 2021, 42(9): 104-114.
AI Y L, DING J Y, LIU Q F, et al.Synergetic optimal scheduling of grid-connected household photovoltaic system considering demand response for loads[J]. Acta energiae solaris sinica, 2021, 42(9): 104-114.
[4] 王丰, 孔鹏举, Lee F C, 等. 基于分布式最大功率跟踪的光伏系统输出特性分析[J]. 电工技术学报, 2015, 30(24): 127-134.
WANG F, KONG P J, LEE F C, et al.Output characteristic analysis of distributed maximum power point tracking PV system[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 127-134.
[5] WALKER G R, SERNIA P C.Cascaded DC-DC converter connection of photovoltaic modules[C]//2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289). Cairns, QLD, Australia, 2002: 24-29.
[6] FEMIA N, LISI G, PETRONE G, et al.Distributed maximum power point tracking of photovoltaic arrays: novel approach and system analysis[J]. IEEE transactions on industrial electronics, 2008, 55(7): 2610-2621.
[7] CHEN S M, LIANG T J, HU K R.Design, analysis, and implementation of solar power optimizer for DC distribution system[J]. IEEE transactions on power electronics, 2013, 28(4): 1764-1772.
[8] WANG F, WU X K, LEE F C, et al.Analysis of unified output MPPT control in subpanel PV converter system[J]. IEEE transactions on power electronics, 2014, 29(3): 1275-1284.
[9] VIGHETTI S, FERRIEUX J P, LEMBEYE Y.Optimization and design of a cascaded DC/DC converter devoted to grid-connected photovoltaic systems[J]. IEEE transactions on power electronics, 2012, 27(4): 2018-2027.
[10] 宁光富, 陈武, 曹小鹏, 等. 适用于模块化级联光伏发电直流并网系统的均压策略[J]. 电力系统自动化, 2016, 40(19): 66-72.
NING G F, CHEN W, CAO X P, et al.Voltage balancing strategy for DC grid-connected photovoltaic power generation systems with modular cascaded structure[J]. Automation of electric power systems, 2016, 40(19): 66-72.
[11] LI X Y, ZHU M, SU M Z, et al.Input-independent and output-series connected modular DC-DC converter with intermodule power balancing units for MVdc integration of distributed PV[J]. IEEE transactions on power electronics, 2020, 35(2): 1622-1636.
[12] ZHUANG Y Z, LIU F, HUANG Y H, et al.A voltage-balancer-based cascaded DC-DC converter with a novel power feedforward control for the medium-voltage DC grid interface of photovoltaic systems[J]. IEEE access, 2019, 7: 178094-178107.
[13] 庄一展, 刘飞, 黄艳辉, 等. 模块化串联光伏直流变换器的环形功率均衡拓扑及效率优化策略[J]. 中国电机工程学报, 2022, 42(5): 1657-1669.
ZHUANG Y Z, LIU F, HUANG Y H, et al.A circular power balancing topology with efficiency optimization strategy for modular cascaded photovoltaic DC/DC converter[J]. Proceedings of the CSEE, 2022, 42(5): 1657-1669.
[14] 王丰, 吴新科, Lee F C, 等. 嵌入式智能光伏模块的最大功率输出统一控制[J]. 中国电机工程学报, 2013, 33(21): 81-89, 196.
WANG F, WU X K, LEE F C, et al.Application of unified output MPPT control in DMPPT PV systems[J]. Proceedings of the CSEE, 2013, 33(21): 81-89, 196.
[15] 郑含博, 杜齐, 郭文豪, 等. 应用于光储系统中的改进型扰动观察MPPT算法[J]. 控制理论与应用, 2022, 39(3): 491-498.
ZHENG H B, DU Q, GUO W H, et al.Improved perturbation and observation MPPT algorithm applied to a hybrid photovoltaic energy storage system[J]. Control theory & applications, 2022, 39(3): 491-498.
PDF(2509 KB)

Accesses

Citation

Detail

Sections
Recommended

/