RESEARCH ON FAULT DIAGNOSIS METHOD OF WIND TURBINE GENERATOR BEARINGS BASED ON DOMAIN ADAPTATION

Tian Miao, Su Xiaoming, Chen Changzheng, An Wenjie, Sun Xianming

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 310-317.

PDF(2142 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2142 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 310-317. DOI: 10.19912/j.0254-0096.tynxb.2022-1137

RESEARCH ON FAULT DIAGNOSIS METHOD OF WIND TURBINE GENERATOR BEARINGS BASED ON DOMAIN ADAPTATION

  • Tian Miao1, Su Xiaoming1, Chen Changzheng1,2, An Wenjie1, Sun Xianming3
Author information +
History +

Abstract

Aiming at the problem that the vibration signals collected by different types of wind turbine generator rolling bearings have different distribution and the sample labels of rolling bearings to be diagnosed are insufficient, this paper proposed a fault diagnosis method of wind turbine generator rolling bearings based on clustering domain adaptive convolutional neural network (CDA-CNN). Firstly, the features of labeled bearing data in the source domain and unlabeled bearing data in the target domain were extracted by using the 1D convolutional neural network. Secondly, the clustering method was used to reduce the difference in the conditional distribution of data features and provided pseudo labels for target domain data. Then, the maximum mean difference (MMD) was used to align the edge distribution of the two domains. Finally, the fault diagnosis model of wind turbine generator rolling bearings was obtained. The proposed CDA-CNN is applied to the fault diagnosis of actual wind turbine generator rolling bearings. The diagnosis results show that the fault diagnosis accuracy of the proposed method is as high as 92.52%, which effectively solves the problem of insufficient available data labels. The test results show that the diagnostic accuracy and transfer of CDA-CNN are better than other methods, and it has a certain engineering application value for the fault diagnosis of wind turbine generator rolling bearings.

Key words

wind turbines / rolling bearings / fault diagnosis / domain adaptation / clustering

Cite this article

Download Citations
Tian Miao, Su Xiaoming, Chen Changzheng, An Wenjie, Sun Xianming. RESEARCH ON FAULT DIAGNOSIS METHOD OF WIND TURBINE GENERATOR BEARINGS BASED ON DOMAIN ADAPTATION[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 310-317 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1137

References

[1] 李洋, 李春, 杨阳. 基于多重分形去趋势波动分析的风力机轴承故障诊断[J]. 太阳能学报, 2019, 40(11): 3235-3243.
LI Y, LI C, YANG Y.Fault diagnosis of wind turbine bearing based on multi-fractal de-trend fluctuation analysis[J]. Acta energiae solaris sinica, 2019, 40(11): 3235-3243.
[2] 向玲, 王朋鹤, 李京蓄. 基于CNN-LSTM的风电机组异常状态检测[J]. 振动与冲击, 2021, 40(22): 11-17.
XIANG L, WANG P H, LI J X.Abnormal state detection of wind turbines based on CNN-LSTM[J]. Journal of vibration and shock, 2021, 40(22): 11-17.
[3] LIU W Y, REN H, ALI SHAHEER M, et al.A novel wind turbine health condition monitoring method based on correlative features domain adaptation[J]. International journal of precision engineering and manufacturing-green technology, 2022, 9(1): 191-200.
[4] LIU Z P, ZHANG L.A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings[J]. Measurement, 2020, 149: 107002.
[5] KONG Y, QIN Z Y, WANG T Y, et al.An enhanced sparse representation-based intelligent recognition method for planet bearing fault diagnosis in wind turbines[J]. Renewable energy, 2021, 173: 987-1004.
[6] 郑龙魁, 向阳, 盛晨兴. 故障滚动轴承的非线性动力学建模与振动分析[J]. 哈尔滨工程大学学报, 2022, 43(5): 681-688.
ZHENG L K, XIANG Y, SHENG C X.Nonlinear dynamic modeling and vibration analysis of faulty rolling bearings[J]. Journal of Harbin Engineering University, 2022, 43(5): 681-688.
[7] 齐咏生, 张二宁, 高胜利, 等. 基于EEMD-KECA的风电机组滚动轴承故障诊断[J]. 太阳能学报, 2017, 38(7): 1943-1951.
QI Y S, ZHANG E N, GAO S L, et al.Wind turbine rolling bearings fault diagnosis based on EEMD-KECA[J]. Acta energiae solaris sinica, 2017, 38(7): 1943-1951.
[8] LUO Y Q, CHEN C Z, ZHAO S Y, et al.Rolling bearing fault diagnosis method with enhanced top-hat transform filtering and cyclic spectrum coherence[J]. IEEE access, 2020, 8: 163715-163729.
[9] 张珂, 王竞禹, 石怀涛, 等. 基于CNN的变工况滚动轴承故障诊断研究[J]. 控制工程, 2022, 29(2): 254-262.
ZHANG K, WANG J Y, SHI H T, et al.Research on rolling bearing fault diagnosis under variable working conditions based on CNN[J]. Control engineering of China, 2022, 29(2): 254-262.
[10] ZHANG M, WANG D, LU W N, et al.A deep transfer model with Wasserstein distance guided multi-adversarial networks for bearing fault diagnosis under different working conditions[J]. IEEE access, 2019, 7: 65303-65318.
[11] LI Y T, JIANG W B, ZHANG G Y, et al.Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data[J]. Renewable energy, 2021, 171: 103-115.
[12] 张根保, 李浩, 冉琰, 等. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1617-1626.
ZHANG G B, LI H, RAN Y, et al.A transfer learning model for bearing fault diagnosis[J]. Journal of Jilin University (engineering and technology edition), 2020, 50(5): 1617-1626.
[13] CHEN W Q, QIU Y N, FENG Y H, et al.Diagnosis of wind turbine faults with transfer learning algorithms[J]. Renewable energy, 2021, 163: 2053-2067.
[14] 陈祝云, 钟琪, 黄如意, 等. 基于增强迁移卷积神经网络的机械智能故障诊断[J]. 机械工程学报, 2021, 57(21): 96-105.
CHEN Z Y, ZHONG Q, HUANG R Y, et al.Intelligent fault diagnosis for machinery based on enhanced transfer convolutional neural network[J]. Journal of mechanical engineering, 2021, 57(21): 96-105.
[15] 夏懿, 徐文学. 一种用于跨域轴承故障诊断的深度自适应网络[J]. 振动与冲击, 2022, 41(3): 45-53, 81.
XIA Y, XU W X.A deep adaptive network for cross-domain bearing fault diagnosis[J]. Journal of vibration and shock, 2022, 41(3): 45-53, 81.
[16] 周华锋, 程培源, 邵思羽, 等. 基于子域自适应对抗网络的轴承故障诊断[J]. 振动与冲击, 2022, 41(11): 114-122.
ZHOU H F, CHENG P Y, SHAO S Y, et al.Bearing fault diagnosis based on subdomain adaptive confrontation network[J]. Journal of vibration and shock, 2022, 41(11): 114-122.
[17] CHENG C, ZHOU B T, MA G J, et al.Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data[J]. Neurocomputing, 2020, 409: 35-45.
[18] MAO W T, LIU Y M, DING L, et al.A new structured domain adversarial neural network for transfer fault diagnosis of rolling bearings under different working conditions[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1-13.
[19] KIM M, KO J U, LEE J, et al.A domain adaptation with semantic clustering (DASC) method for fault diagnosis of rotating machinery[J]. ISA transactions, 2022, 120: 372-382.
[20] YANG Z L, MA X S, MA Y C.A fault diagnosis model based on convolution neural network for wind turbine rolling bearing[J]. IOP conference series: earth and environmental science, 2019, 252: 032039.
[21] LONG M S, CAO Y, WANG J M, et al.Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Liue, France 2015: 97-105.
[22] ZHU Y C, ZHUANG F Z, WANG J D, et al.Deep subdomain adaptation network for image classification[J]. IEEE transactions on neural networks and learning systems, 2021, 32(4): 1713-1722.
[23] HE Z H, YANG B, CHEN C X, et al.CLDA: an adversarial unsupervised domain adaptation method with classifier-level adaptation[J]. Multimedia tools and applications, 2020, 79(45/46): 33973-33991.
PDF(2142 KB)

Accesses

Citation

Detail

Sections
Recommended

/