WIND-INDUCED VIBRATION ANALYSIS OF FLEXIBLE PHOTOVOLTAIC SUPPORT STRUCTURE UNDER MOUNTAIN CANYON TERRAIN

Guo Tao, Yang Yuanming, Huang Guoqiang, Zhang Jinming

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 131-140.

PDF(3686 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3686 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (11) : 131-140. DOI: 10.19912/j.0254-0096.tynxb.2022-1198

WIND-INDUCED VIBRATION ANALYSIS OF FLEXIBLE PHOTOVOLTAIC SUPPORT STRUCTURE UNDER MOUNTAIN CANYON TERRAIN

  • Guo Tao1, Yang Yuanming1, Huang Guoqiang2, Zhang Jinming1
Author information +
History +

Abstract

In order to accurately investigate the overall wind resistance performance of flexible support photovoltaic array this paper takes a photovoltaic power project as the research object, establishes the overall model of solar photovoltaic arrays with pre-tensioning of flexible ropes, the flow field and wind-induced vibration response are analyzed based on Davenport wind spectrum and auto-regressive technique. The results showe that the wind pressure shape coefficient is decreased along the wind direction with obvious gradient. Therefore, the wind load distribution on the surface of photovoltaic module is non-uniform, which is the main cause of torsional vibration of photovoltaic modules under the action of wind. The photovoltaic modules at the edge of array are most affected by the wind field, which is the dangerous area and should be given sufficient attention in this design. The response amplitude of wind-induce vibration is about 8.0 cm, and the probability of collision and hidden crack between photovoltaic module is low. It shows that the flexible support structure can be used as a substitute for rigid support. The structural stiffness of the flexible support photovoltaic arrays is uniform distributed. So the wind-induced vibration response trend of all photovoltaic modules is the same, and it's mainly low-frequency vibration, the wind-induced vibration coefficient is about 1.7. Anchor cable has a significant constraint effect on vibration, Therefore, the distribution adjustment of cable number and position can be used as the preferred condition for structural optimization.

Key words

PV arrays / flexible support / wind-induced vibration response / numerical wind tunnel / wind vibration coefficient / drag structure

Cite this article

Download Citations
Guo Tao, Yang Yuanming, Huang Guoqiang, Zhang Jinming. WIND-INDUCED VIBRATION ANALYSIS OF FLEXIBLE PHOTOVOLTAIC SUPPORT STRUCTURE UNDER MOUNTAIN CANYON TERRAIN[J]. Acta Energiae Solaris Sinica. 2023, 44(11): 131-140 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1198

References

[1] R. H. O.Model tests showed aerodynamic instability of Tacoma narrows bridge[J]. Pergamon, 1941, 231(5): 470.
[2] 颜大椿. 湍流、风工程和虎门大桥的风振[J]. 力学与实践, 2020, 42(4): 523-525.
YAN D C.Turbulence, wind engineering and wind vibration of Humen Bridge[J]. Mechanics in engineering, 2020, 42(4): 523-525.
[3] 张献兵, 雷军, 张秀玲, 等. 深圳赛格大厦异常振动成因分析[J]. 科学技术与工程, 2021, 21(25): 10588-10602.
ZHANG X B, LEI J, ZHANG X L, et al.Analysis of the causes of abnormal vibration of Shenzhen SEG building[J]. Science technology and engineering, 2021, 21(25): 10588-10602.
[4] 武岳, 吴迪, 孙瑛. 结构风振分析中的脉动风荷载频率补偿方法[J]. 振动工程学报, 2010, 23(5): 480-486.
WU Y, WU D, SUN Y.The frequency compensation of fluctuating wind loads in wind-induced response analysis[J]. Journal of vibration engineering, 2010, 23(5): 480-486.
[5] ABOSHOSHA H, ELAWADY A, EL ANSARY A, et al.Review on dynamic and quasi-static buffeting response of transmission lines under synoptic and non-synoptic winds[J]. Engineering structures, 2016, 112: 23-46.
[6] MARA T G.Updated gust response factors for transmission line loading[C]//Electrical Transmission and Substation Structures 2015. Branson, Missouri, 2015.
[7] HUANG M F, LOU W J, YANG L, et al.Experimental and computational simulation for wind effects on the Zhoushan transmission towers[J]. Structure and infrastructure engineering, 2012, 8(8): 781-799.
[8] LOREDO-SOUZA A M, DAVENPORT A G. The influence of the design methodology in the response of transmission towers to wind loading[J]. Journal of wind engineering and industrial aerodynamics, 2003, 91(8): 995-1005.
[9] 熊铁华, 梁枢果. 大跨越钢管混凝土输电塔顺风向分区风荷载谱识别方法[J]. 振动与冲击, 2012, 31(23): 26-31.
XIONG T H, LIANG S G.Along-wind load spectra identification method for a long-span concrete-filled steel-tube transmission tower[J]. Journal of vibration and shock, 2012, 31(23): 26-31.
[10] 刘志文, 沈静思, 陈政清, 等. 斜拉索涡激振动气动控制措施试验研究[J]. 振动工程学报, 2021, 34(3): 441-451.
LIU Z W, SHEN J S, CHEN Z Q, et al.Experimental study on aerodynamic control measures for vortex-induced vibration of stay-cable[J]. Journal of vibration engineering, 2021, 34(3): 441-451.
[11] 杜晓庆, 吴葛菲, 林伟群, 等. 缆索承重桥并列索尾流致气弹失稳研究[J]. 土木工程学报, 2020, 53(8): 57-63.
DU X Q, WU G F, LIN W Q, et al.Study on wake-induced aeroelastic instabilities of parallel cables in cable-supported bridges[J]. China civil engineering journal, 2020, 53(8): 57-63.
[12] 俞登科, 李正良, 施菁华, 等. ±800 kV直流双柱悬索拉线塔塔线体系风振响应的风洞试验研究[J]. 中国电机工程学报, 2015, 35(4): 1009-1013.
YU D K, LI Z L, SHI J H, et al.Wind tunnel test on wind-induced response of ±800 kV DC cross-rope suspension tower-line[J]. Proceedings of the CSEE, 2015, 35(4): 1009-1013.
[13] 汪大海, 王涛, 汪伟, 等. 输电线-绝缘子体系三维抖振响应的时/频域理论方法研究[J]. 振动工程学报, 2022, 35(5): 1109-1117.
WANG D H, WANG T, WANG W, et al.Frequency and time domain analytical methods for wind-induced buffeting response of overhead conductor[J]. Journal of vibration engineering, 2022, 35(5): 1109-1117.
[14] 楼文娟, 温作鹏, 梁洪超. 大档距特高压覆冰输电线路起舞风速TTMD控制优化研究[J]. 振动工程学报, 2021, 34(5): 934-942.
LOU W J, WEN Z P, LIANG H C.Optimization for galloping wind speed control of ultra-high-voltage iced conductors with large span using TTMD[J]. Journal of vibration engineering, 2021, 34(5): 934-942.
[15] 赵爽, 晏致涛, 李正良, 等. 1000 kV苏通大跨越输电塔线体系气弹模型的风洞试验研究[J]. 中国电机工程学报, 2018, 38(17): 5257-5265, 5323.
ZHAO S, YAN Z T, LI Z L, et al.Investigation on wind tunnel tests of an aeroelastic model of 1000 kV Sutong long span transmission tower-line system[J]. Proceedings of the CSEE, 2018, 38(17): 5257-5265, 5323.
[16] 张爱社, 高翠兰, 申成军, 等. 屋面光伏板风荷载特性数值分析[J]. 计算力学学报, 2016, 33(5): 683-688, 737.
ZHANG A S, GAO C L, SHEN C J, et al.Numerical analysis of wind load characteristics of photovoltaic panels mounted on a roof[J]. Chinese journal of computational mechanics, 2016, 33(5): 683-688, 737.
[17] 高亮, 窦珍珍, 白桦, 等. 光伏组件风荷载影响因素分析[J]. 太阳能学报, 2016, 37(8): 1931-1937.
GAO L, DOU Z Z, BAI H, et al.Analysis of influence factors for wind lode of PV module[J]. Acta energiae solaris sinica, 2016, 37(8): 1931-1937.
[18] LIU M, LI Q S, HUANG S H, et al.Evaluation of wind effects on a large span retractable roof stadium by wind tunnel experiment and numerical simulation[J]. Journal of wind engineering and industrial aerodynamics, 2018, 179: 39-57.
[19] 周炜, 何斌, 蔡晶, 等. 一类光伏电站架构体系的风荷载特性及折减分析[J]. 结构工程师, 2018, 34(2): 86-94.
ZHOU W, HE B, CAI J, et al.Wind load characteristics and reduction analysis of a structural system of photovoltaic power station[J]. Structural engineers, 2018, 34(2): 86-94.
[20] 龚敏, 欧添雁. 单个屋面光伏组件风载体型系数风洞试验研究[J]. 安徽建筑, 2015, 22(6): 183-184, 196.
GONG M, OU T Y.Research on wind tunnel test of shape coefficient of wind load for photovoltaic module with single roof[J]. Anhui architecture, 2015, 22(6): 183-184, 196.
[21] 王彩玉, 马文勇, 韩晓乐, 等. 女儿墙对平屋面阵列光伏板风荷载的影响[J]. 工程力学, 2021, 38(S1): 216-222.
WANG C Y, MA W Y, HAN X L, et al.Effect of parapet on wind load of flat roof array solar pannel[J]. Engineering mechanics, 2021, 38(S1): 216-222.
[22] 徐志宏, 侯国华, 张志强, 等. 鱼腹式光伏索桁架风振系数数值分析[J]. 太阳能, 2019(2): 46-49, 18.
XU Z H, HOU G H, ZHANG Z Q, et al.Numerical analysis of wind-induced vibration coefficient of fish-belt PV cable truss[J]. Solar energy, 2019(2): 46-49, 18.
[23] 方媛, 何斌. 柔性绳索预拉力作用下太阳能光伏阵列流固耦合颤振特性仿真[C]//中国力学大会论文集(CCTAM 2019). 杭州, 2019: 2537-2548.
FANG Y, HE B.Simulation of fluid-structure interaction flutter characteristics of solar photovoltaic arrays under the pretension of flexible ropes[C]//Proceedings of the China Congress of Mechanics (CCTAM 2019). Hangzhou, 2019: 2537-2548.
[24] 谢丹, 范军. 预应力柔性光伏支承体系风振分析[J]. 建筑结构, 2021, 51(21): 15-18.
XIE D, FAN J.Wind vibration analysis of prestressed flexible photovoltaic support system[J]. Building structure, 2021, 51(21): 15-18.
[25] 王泽国, 赵菲菲, 吉春明, 等. 多排多跨柔性光伏支架的风致振动分析[J]. 武汉大学学报(工学版), 2021, 54(S2): 75-79.
WANG Z G, ZHAO F F, JI C M, et al.Wind-induced vibration analysis of multi-row and multi-span flexible photovoltaic support[J]. Engineering journal of Wuhan University, 2021, 54(S2): 75-79.
[26] 王泽国, 赵菲菲, 吉春明, 等. 多排大跨度柔性光伏支架的振动控制研究[J]. 武汉大学学报(工学版), 2020, 53(S1): 29-34.
WANG Z G, ZHAO F F, JI C M, et al.Analysis of vibration control of multi-row large-span flexible photovoltaic supports[J]. Engineering journal of Wuhan University, 2020, 53(S1): 29-34.
[27] 马文勇, 柴晓兵, 赵怀宇, 等. 基于偏心风荷载分布模型的柔性支撑索分配系数研究[J]. 振动与冲击, 2021, 40(12): 305-310.
MA W Y, CHAI X B, ZHAO H Y, et al.A study on distribution coefficient of a flexible photovoltaic support cable based on an eccentric moment wind load distribution model[J]. Journal of vibration and shock, 2021, 40(12): 305-310.
[28] 马文勇, 柴晓兵, 马成成. 柔性支撑光伏组件风荷载影响因素试验研究[J]. 太阳能学报, 2021, 42(11): 10-18.
MA W Y, CHAI X B, MA C C.Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta energiae solaris sinica, 2021, 42(11): 10-18.
[29] 吕天杰, 吕海峰. 一种预应力索支承光伏支架系统: CN207010598U[P].2018-02-13.
LYU T J, LYU H F. The utility model relates to a solar photovoltaic support system with prestressed cable: CN207010598U[P].2018-02-13.
[30] 吕海峰, 吕天杰. 一种用于预应力悬索光伏电站的四角锥连接件: CN210273900U[P].2020-04-07.
LYU H F, LYU T J. The utility model relates to a four-angle cone connector use to Prestressed suspension photovoltaic power station: CN210273900U[P].2020-04-07.
[31] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
[32] Architectural institute of Japan. Recommendations for loads on buildings[S]. Tokyo: Architectural Institute of Japan, 2004.
[33] 马文勇, 马成成, 王彩玉, 等. 光伏阵列风荷载干扰效应风洞试验研究[J]. 实验流体力学, 2021, 35(4): 19-25.
MA W Y, MA C C, WANG C Y, et al.Wind tunnel experimental study on the wind load interference effect of solar panel arrays[J]. Journal of experiments in fluid mechanics, 2021, 35(4): 19-25.
[34] 杜航, 徐海巍, 张跃龙, 等. 大跨柔性光伏支架结构风压特性及风振响应[J]. 哈尔滨工业大学学报, 2022, 54(10): 67-74.
DU H, XU H W, ZHANG Y L, et al.Wind pressure characteristics and wind vibration response of long-span flexible photovoltaic support structure[J]. Journal of Harbin institute of technology, 2022, 54(10): 67-74.
[35] KAREEM A, WU T.Wind-induced effects on bluff bodies in turbulent flows: Nonstationary, non-Gaussian and nonlinear features[J]. Journal of wind engineering and industrial aerodynamics, 2013, 122: 21-37.
[36] 张相庭. 工程抗风设计计算手册[M]. 北京: 中国建筑工业出版社, 1998.
ZHANG X T.Handbook of engineering wind-resistant design and calculation[M]. Beijing: China Architecture & Building Press, 1998.
PDF(3686 KB)

Accesses

Citation

Detail

Sections
Recommended

/