SHORT-TERM PHOTOVOLTAIC POWER COMBINATION PREDICTION BASED ON HPO-VMD AND MISMA-DHKELM

Wang Chao, Lin Hong, Pang Xiaohong

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 65-73.

PDF(4533 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4533 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 65-73. DOI: 10.19912/j.0254-0096.tynxb.2022-1225

SHORT-TERM PHOTOVOLTAIC POWER COMBINATION PREDICTION BASED ON HPO-VMD AND MISMA-DHKELM

  • Wang Chao1,2, Lin Hong1, Pang Xiaohong2
Author information +
History +

Abstract

To improve the prediction accuracy of photovoltaic power generation, a short-term photovoltaic power combination forecasting method based on optimized variational mode decomposition (VMD), multi-strategy improved slime mold algorithm (MISMA) and deep hybrid kernel extreme leaning machine (DHKELM) is proposed. Firstly, the VMD decomposition technology is used to decompose the power data of different weather types into multiple modal components. In order to avoid the frequency confusion between modal components, the hunter-prey optimizer (HPO) algorithm is used to optimize the key parameters of VMD-decomposition level and penalty factors. Then DHKELM prediction model is established for each component decomposed by different weather types, and MISMA is used to optimize the hyperparameters of DHKELM model. Finally, the summation and reconstruction of each modal component prediction results are taken as the final prediction results. The actual data of a photovoltaic power station in Xinjiang are used for experimental analysis. The experimental results show that this method can achieve better forecasting effect under different weather types. Its prediction acc uracy is viously better than that of a single prediction model. Compared with other methods, the effectiveness of the method is verified.

Key words

photovoltaic power / variational mode decomposition / combined prediction / multi-strategy improved slime mould algorithm / deep hybrid kernel extreme leaning machine

Cite this article

Download Citations
Wang Chao, Lin Hong, Pang Xiaohong. SHORT-TERM PHOTOVOLTAIC POWER COMBINATION PREDICTION BASED ON HPO-VMD AND MISMA-DHKELM[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 65-73 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1225

References

[1] 叶林, 路朋, 赵永宁, 等. 含风电电力系统有功功率模型预测控制方法综述[J]. 中国电机工程学报, 2021, 41(18): 6181-6198.
YE L, LU P, ZHAO Y N, et al.Review of model predictive control for power system with large-scale wind power grid-connected[J]. Proceedings of the CSEE, 2021, 41(18): 6181-6198.
[2] MADHIARASAN M.Accurate prediction of different forecast horizons wind speed using a recursive radial basis function neural network[J]. Protection and control of modern power systems, 2020, 5(1): 1-9.
[3] CHEN B, LI J H.Combined probabilistic forecasting method for photovoltaic power using an improved Markov chain[J]. IET generation, transmission & distribution, 2019, 13(19): 4364-4373.
[4] FENG Y, HAO W P, LI H R, et al.Machine learning models to quantify and map daily global solar radiation and photovoltaic power[J]. Renewable and sustainable energy reviews, 2020, 118: 109393.
[5] 孙泽贤, 孙鹤旭. 计及误差反馈的短期风电功率预测[J]. 太阳能学报, 2020, 41(8): 281-287.
SUN Z X, SUN H X.Short-term wind power forecast considering error feedback[J]. Acta energiae solaris sinica, 2020, 41(8): 281-287.
[6] 鲍长庚, 闫贻鹏, 黄一楠, 等. 基于多元自适应回归样条的光伏并网系统日输出功率预测[J]. 电力系统保护与控制, 2021, 49(5): 124-131.
BAO C G, YAN Y P, HUANG Y N, et al.Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines[J]. Power system protection and control, 2021, 49(5): 124-131.
[7] 欧阳静, 杨吕, 尹康, 等. 基于ALIF-LSTM多任务学习的综合能源系统短期负荷预测[J]. 太阳能学报, 2022, 43(9): 499-507.
OUYANG J, YANG L, YIN K, et al.Short-term load forecasting method for integrated energy system based on alif-lstm and multi-task learning[J]. Acta energiae solaris sinica, 2022, 43(9): 499-507.
[8] ZHANG N, REN Q, LIU G C, et al.Short-term PV output power forecasting based on CEEMDAN-AE-GRU[J]. Journal of electrical engineering & technology, 2022, 17(2): 1183-1194.
[9] 金吉, 王斌, 喻敏, 等. 基于分形特征的自适应EEMD及其在风功率预测中的应用[J]. 太阳能学报, 2023, 44(5): 416-424.
JIN J, WANG B, YU M, et al.Adaptive eemd on basis of fraction characteristics and its application on wind power forecasting[J]. Acta energiae solaris sinica, 2023, 44(5): 416-424.
[10] 王晓东, 苗宜之, 刘颖明, 等. 基于多分解策略和误差校正的超短期风电功率混合智能预测算法[J]. 太阳能学报, 2021, 42(6): 312-320.
WANG X D, MIAO Y Z, LIU Y M, et al.Hybrid intelligent prediction algorithm of ultra-short-term wind power based on multi-decomposition strategy and error correction[J]. Acta energiae solaris sinica, 2021, 42(6): 312-320.
[11] 陈涛, 王艳, 纪志成. 基于经验小波变换的光伏功率组合预测模型[J]. 系统仿真学报, 2021, 33(11): 2627-2635.
CHEN T, WANG Y, JI Z C.Combination forecasting model of photovoltaic power based on empirical wavelet transform[J]. Journal of system simulation, 2021, 33(11): 2627-2635.
[12] ZHANG J L, TAN Z F, WEI Y M.An adaptive hybrid model for day-ahead photovoltaic output power prediction[J]. Journal of cleaner production, 2020, 244: 118858.
[13] 王粟, 江鑫, 曾亮, 等. 基于VMD-DESN-MSGP模型的超短期光伏功率预测[J]. 电网技术, 2020, 44(3): 917-926.
WANG S, JIANG X, ZENG L, et al.Ultra-short-term photovoltaic power prediction based on VMD-DESN-MSGP model[J]. Power system technology, 2020, 44(3): 917-926.
[14] 商立群, 李洪波, 侯亚东, 等. 基于特征选择和优化极限学习机的短期电力负荷预测[J]. 西安交通大学学报, 2022, 56(4): 165-175.
SHANG L Q, LI H B, HOU Y D, et al.Short-term power load forecasting based on feature selection and optimized extreme learning machine[J]. Journal of Xi’an Jiaotong University, 2022, 56(4): 165-175.
[15] KALOOP M R, KUMAR D, ZARZOURA F, et al.A wavelet-particle swarm optimization-Extreme learning machine hybrid modeling for significant wave height prediction[J]. Ocean engineering, 2020, 213: 107777.
[16] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[17] NARUEI I, KEYNIA F, SABBAGH MOLAHOSSEINI A.Hunter-prey optimization: algorithm and applications[J]. Soft computing, 2022, 26(3): 1279-1314.
[18] LI S M, CHEN H L, WANG M J, et al.Slime mould algorithm: a new method for stochastic optimization[J]. Future generation computer systems, 2020, 111: 300-323.
[19] TANG A D, TANG S Q, HAN T, et al.A modified slime mould algorithm for global optimization[J]. Computational intelligence and neuroscience, 2021, 2021: 2298215.
[20] 商立群, 李洪波, 侯亚东, 等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2022, 50(21): 138-148.
SHANG L Q, LI H B, HOU Y D, et al.Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J]. Power system protection and control, 2022, 50(21): 138-148.
[21] 张娜, 任强, 刘广忱, 等. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57-65.
ZHANG N, REN Q, LIU G C, et al.PV power short-term forecasting method based on VMD-GWO-ELMAN[J]. Electric power, 2022, 55(5): 57-65.
[22] 李秉晨, 于惠钧, 刘靖宇. 基于Kmeans和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39(4): 204-208.
LI B C, YU H J, LIU J Y.Prediction of short-term photovoltaic power generation based on Kmeans and CEEMD-PE-LSTM[J]. Water resources and power, 2021, 39(4): 204-208.
[23] 左远龙, 黄玉水, 杨晓辉, 等. 基于PFA-MBAS-BP神经网络模型的光伏发电短期预测[J]. 电力系统保护与控制, 2020, 48(15): 84-91.
ZUO Y L, HUANG Y S, YANG X H, et al.Short-term prediction of photovoltaic power generation based on a PFA-MBAS-BP neural network model[J]. Power system protection and control, 2020, 48(15): 84-91.
PDF(4533 KB)

Accesses

Citation

Detail

Sections
Recommended

/