SLIDING MODE POWER OPTIMIZATION OF DIRECT-DRIVE WAVE POWER GENERATION SYSTEM BASED ON IMPEDANCE-MATCHING STRATEGY

Huang Yi, Yang Junhua, Lin Bingjun, Lyu Shiqiang, Deng Cunjie

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 22-28.

PDF(2745 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2745 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (6) : 22-28. DOI: 10.19912/j.0254-0096.tynxb.2022-1227

SLIDING MODE POWER OPTIMIZATION OF DIRECT-DRIVE WAVE POWER GENERATION SYSTEM BASED ON IMPEDANCE-MATCHING STRATEGY

  • Huang Yi, Yang Junhua, Lin Bingjun, Lyu Shiqiang, Deng Cunjie
Author information +
History +

Abstract

Traditional resonance methods can be used to improve the operational performance of direct-drive wave power generation systems, but it may be counterproductive under irregular excitation, so an improved impedance-matching control strategy was proposed. Based on the equivalent circuit model, the maximum power capture condition was constructed. In order to adapt to the actual working conditions, a constraint handling mechanisms was proposed. To ensure safe operation of system, the float speed and displacement were adjusted by changing the gain. Taking the excitation force and electromagnetic force as unknown inputs, a sliding mode observer was designed to detect wave force. The control motor tracked the ideal trajectory to achieve power optimization control. The simulation results show that the sliding-mode observer has high accuracy, which can estimate the excitation force online. The proposed strategy can balance the float motion state and output power, and improve the system wave energy extraction.

Key words

wave power / sliding mode control / forecasting / impedance-matching / permanent magnet synchronous liner machine

Cite this article

Download Citations
Huang Yi, Yang Junhua, Lin Bingjun, Lyu Shiqiang, Deng Cunjie. SLIDING MODE POWER OPTIMIZATION OF DIRECT-DRIVE WAVE POWER GENERATION SYSTEM BASED ON IMPEDANCE-MATCHING STRATEGY[J]. Acta Energiae Solaris Sinica. 2024, 45(6): 22-28 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1227

References

[1] 肖曦, 摆念宗, 康庆, 等. 波浪发电系统发展及直驱式波浪发电系统研究综述[J]. 电工技术学报, 2014, 29(3): 1-11.
XIAO X, BAI N Z, KANG Q, et al.A review of the development of wave power system and the research on direct-drive wave power system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 1-11.
[2] 邱孟, 杨俊华, 林汇金, 等. 先进控制技术在波浪发电系统中的应用[J]. 电机与控制应用, 2021, 48(2): 13-21.
QIU M, YANG J H, LIN H J, et al.Application of modern control technology in wave energy conversion system[J]. Electric machines & control application, 2021, 48(2): 13-21.
[3] 肖晓龙, 肖龙飞, 杨立军. 串联直驱浮子式波浪能发电装置能量捕获研究[J]. 太阳能学报, 2018, 39(2): 398-405.
XIAO X L, XIAO L F, YANG L J.Energy harvesting study of series direct driven float wave energy converter[J]. Acta energiae solaris sinica, 2018, 39(2): 398-405.
[4] FALNES J.A review of wave-energy extraction[J]. Marine structures, 2007, 20(4): 185-201.
[5] 熊锋俊, 杨俊华, 沈辉, 等. 基于纵横交叉算法的波浪发电装置最大功率跟踪控制[J]. 电测与仪表, 2019, 56(8): 124-130, 143.
XIONG F J, YANG J H, SHEN H, et al.The maximum power point tracking control based on crisscross optimization algorithm for wave power generation[J]. Electrical measurement & instrumentation, 2019, 56(8): 124-130, 143.
[6] PISCOPO V, BENASSAI G, COZZOLINO L, et al.A new optimization procedure of heaving point absorber hydrodynamic performances[J]. Ocean engineering, 2016, 116: 242-259.
[7] 陈海峰, 杨俊华, 沈辉, 等. 基于主频预估的波浪发电系统自适应滑模控制[J]. 计算机仿真, 2020, 37(3): 94-99.
CHEN H F, YANG J H, SHEN H, et al.Adaptive sliding mode control of wave power generation system based on dominant frequency estimation[J]. Computer simulation, 2020, 37(3): 94-99.
[8] 卢思灵, 杨俊华, 沈辉, 等. 直驱式波浪发电系统的经济模型预测控制[J]. 电测与仪表, 2021, 58(3): 131-138.
LU S L, YANG J H, SHEN H, et al.Economic model predictive control of direct-drive wave power generation systems[J]. Electrical measurement & instrumentation, 2021, 58(3): 131-138.
[9] BACELLI G, RINGWOOD J V.Numerical optimal control of wave energy converters[J]. IEEE transactions on sustainable energy, 2015, 6(2): 294-302.
[10] SUN T, NIELSEN S R K. Stochastic optimal control of a heave point wave energy converter based on a modified LQG approach[J]. Ocean engineering, 2018, 154: 357-366.
[11] ZHAN S Y, LI G.Linear optimal noncausal control of wave energy converters[J]. IEEE transactions on control systems technology, 2019, 27(4): 1526-1536.
[12] 杨俊华, 邹子君, 杨金明, 等. 基于人群搜索算法的波浪发电系统最优负载[J]. 太阳能学报, 2019, 40(10): 2725-2731.
YANG J H, ZOU Z J, YANG J M, et al.Optimal load of wave power generation system based on seeker optimization algorithm[J]. Acta energiae solaris sinica, 2019, 40(10): 2725-2731.
[13] KRACHT P, PEREZ-BECKER S, RICHARD J B, et al.Performance improvement of a point absorber wave energy converter by application of an observer-based control: results from wave tank testing[J]. IEEE transactions on industry applications, 2015, 51(4): 3426-3434.
[14] NGUYEN H N, TONA P.Wave excitation force estimation for wave energy converters of the point-absorber type[J]. IEEE transactions on control systems technology, 2018, 26(6): 2173-2181.
[15] ABDELRAHMAN M, PATTON R.Observer-based unknown input estimator of wave excitation force for a wave energy converter[J]. IEEE transactions on control systems technology, 2020, 28(6): 2665-2672.
[16] MAHMOODI K, NEPOMUCENO E, RAZMINIA A.Wave excitation force forecasting using neural networks[J]. Energy, 2022, 247: 123322.
[17] 程正顺. 浮子式波浪能转换装置机理的频域及时域研究[D]. 上海: 上海交通大学, 2013.
CHENG Z S.Frequency domain and time domain analysis on mechanism of a point absorber wave energy convertor[D]. Shanghai: Shanghai Jiao Tong University, 2013.
[18] 林巧梅, 杨俊华, 蔡浩然, 等. 基于滑模控制的直驱式波浪发电系统MPPT控制策略[J]. 电测与仪表, 2018, 55(10): 90-95.
LIN Q M, YANG J H, CAI H R, et al.MPPT algorithm for direct-drive wave power generation system based on sliding mode control[J]. Electrical measurement & instrumentation, 2018, 55(10): 90-95.
PDF(2745 KB)

Accesses

Citation

Detail

Sections
Recommended

/