MPPT ALGORITHM FOR PHOTOVOLTAICS BASED ON GA-GRU NEURAL NETWORK

Wang Ranran, Gao Huimin, Zhang Xinyu

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 212-219.

PDF(2158 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2158 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (9) : 212-219. DOI: 10.19912/j.0254-0096.tynxb.2022-1254

MPPT ALGORITHM FOR PHOTOVOLTAICS BASED ON GA-GRU NEURAL NETWORK

  • Wang Ranran1, Gao Huimin2, Zhang Xinyu3
Author information +
History +

Abstract

This paper proposes a maximum power point tracking algorithm that combines genetic algorithm and GRU neural network (GA-GRU-MPPT) to address the problem of photovoltaic power generation systems struggling to maintain maximum power point output in the face of rapidly changing external environmental factors. Based on the constructed maximum power point prediction model, this algorithm optimizes the parameters of the GRU neural network using genetic algorithm. Considering the correlation of the data, the previous moment's solar cell temperature, solar irradiance, maximum power point voltage, as well as the current moment’s solar cell temperature and solar irradiance, are taken as input variables for the prediction model, with the output being the current moment’s maximum power point voltage. Simulation results for three different climate scenarios show that the tracking accuracy of this algorithm can reach 99%, significantly improving the energy conversion efficiency of solar photovoltaic systems.

Key words

solar cells / maximum power point trackers / genetic algorithms / GRU neural network / simulation

Cite this article

Download Citations
Wang Ranran, Gao Huimin, Zhang Xinyu. MPPT ALGORITHM FOR PHOTOVOLTAICS BASED ON GA-GRU NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 212-219 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1254

References

[1] 王义飞, 吴伟, 杨宇, 等. 光伏系统最大功率点快速判断和跟踪方法[J]. 系统仿真学报, 2013, 25(2): 389-393.
WANG Y F, WU W, YANG Y, et al.Novel method of MPP tracking in photovoltaic system[J]. Journal of system simulation, 2013, 25(2): 389-393.
[2] ABOUADANE H, FAKKAR A, SERA D, et al.Multiple-power-sample based P&O MPPT for fast-changing irradiance conditions for a simple implementation[J]. IEEE journal of photovoltaics, 2020, 10(5): 1481-1488.
[3] ALSUMIRI M.Residual incremental conductance based nonparametric MPPT control for solar photovoltaic energy conversion system[J]. IEEE access, 2019, 7: 87901-87906.
[4] 李晶, 窦伟, 徐正国, 等. 光伏发电系统中最大功率点跟踪算法的研究[J]. 太阳能学报, 2007, 28(3): 268-273.
LI J, DOU W, XU Z G, et al.Research on MPPT methods of photovoltaic power generation system[J]. Acta energiae solaris sinica, 2007, 28(3): 268-273.
[5] ELTAMALY A M.An improved cuckoo search algorithm for maximum power point tracking of photovoltaic systems under partial shading conditions[J]. Energies, 2021, 14(4): 953-953.
[6] LAXMAN B, ANNAMRAJU A, SRIKANTH N V.A grey wolf optimized fuzzy logic based MPPT for shaded solar photovoltaic systems in microgrids[J]. International journal of hydrogen energy, 2021, 46(18): 10653-10665.
[7] WAFA H, EMANUELE O, ALBERTO D, et al.Improved PSO: a comparative study in MPPT algorithm for PV system control under partial shading conditions[J]. Energies, 2020, 13(8): 2035.
[8] MOSAAD M I, ABED EL RAOUF M O, AL AHMAR M A, et al. Maximum power point tracking of PV system based cuckoo search algorithm; review and comparison[J]. Energy procedia, 2019, 162: 117-126.
[9] 胥芳, 张任, 吴乐彬, 等. 自适应BP神经网络在光伏MPPT中的应用[J]. 太阳能学报, 2012, 33(3): 468-472.
XU F, ZHANG R, WU L B, et al.Self-adaption BP neural network for the maximum-power-point tracking in photovoltaic[J]. Acta energiae solaris sinica, 2012, 33(3): 468-472.
[10] SURABHI C, PRERNA G.Radial basis function neural network technique for efficient maximum power point tracking in solar photo-voltaic system[J]. Procedia computer science,2020, 167: 2354-2363.
[11] 林虹江, 周步祥, 冉伊, 等. 基于遗传优化BP神经网络算法的光伏系统最大功率点跟踪研究[J]. 电测与仪表, 2015, 52(5): 35-40.
LIN H J, ZHOU B X, RAN Y, et al.Research on the maximum power point tracking of the photovoltaic system based on the genetic optimization BP neural network algorithm[J]. Electrical measurement instrumentation, 2015, 52(5): 35-40.
[12] 王志豪, 李自成, 王后能, 等. 基于RBF神经网络的光伏系统MPPT研究[J]. 电力系统保护与控制, 2020, 48(6): 85-91.
WANG Z H, LI Z C, WANG H N, et al.MPPT study of solar PV power system based on RBF neural network algorithm[J]. Power system protection and control, 2020, 48(6): 85-91.
[13] 茆美琴, 余世杰, 苏建徽. 带有MPPT功能的光伏阵列Matlab通用仿真模型[J]. 系统仿真学报, 2005, 17(5): 1248-1251.
MAO M Q, YU S J, SU J H.Versatile matlab simulation model for photovoltaic array with MPPT function[J]. Acta simulata systematica sinica, 2005, 17(5): 1248-1251.
[14] 崔岩, 蔡炳煌, 李大勇, 等. 太阳能光伏模板仿真模型的研究[J]. 系统仿真学报, 2006, 18(4): 829-831, 834.
CUI Y, CAI B H, LI D Y, et al.Study on simulation model of PV module[J]. Journal of system simulation, 2006, 18(4): 829-831, 834.
[15] WEI X, ZHANG L L, YANG H Q, et al.Machine learning for pore-water pressure time-series prediction: application of recurrent neural networks[J]. Geoscience frontiers, 2021, 12(1): 453-467.
PDF(2158 KB)

Accesses

Citation

Detail

Sections
Recommended

/