OTEC PERFORMANCE AND THERMAL ECONOMY ANALYSIS BASED ON INTERMEDIATE EXTRACTION OF UEHARA CYCLE

Zhu Keyu, Bian Yongning, Liu Yang

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 393-400.

PDF(2175 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2175 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 393-400. DOI: 10.19912/j.0254-0096.tynxb.2022-1264

OTEC PERFORMANCE AND THERMAL ECONOMY ANALYSIS BASED ON INTERMEDIATE EXTRACTION OF UEHARA CYCLE

  • Zhu Keyu, Bian Yongning, Liu Yang
Author information +
History +

Abstract

Based on the Uehara cycle of temperature difference power generation and considering the climate conditions in the South China Sea, the intermediate steam extraction segment is analyzed with simulation method. The circulating thermal efficiency, the consumption of cold and hot seawater and the circulating exergy efficiency of the power generating system with Uehara cycle are researched. Meanwhile, the Levelized cost of electricity is analyzed. The results show that there is an optimum extraction gas rate for the thermal efficiency and exergy efficiency to reach an optimal level at the same time. And for different intermediate extraction pressure, the extra intermediate extraction rate to reach the best value is different. The cost increases with the extraction rate and is concentrated in the heat exchanger. When building an ocean thermoelectric power plant, the appropriate intermediate extraction pressure and extraction rate should be selected according to the specific working conditions.

Key words

ocean thermal energy conversion / low-temperature heat / economic analysis / Uehara cycle / Aspen Plus

Cite this article

Download Citations
Zhu Keyu, Bian Yongning, Liu Yang. OTEC PERFORMANCE AND THERMAL ECONOMY ANALYSIS BASED ON INTERMEDIATE EXTRACTION OF UEHARA CYCLE[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 393-400 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1264

References

[1] 郭德才. 海洋, 是人类未来生存发展的希望[J]. 地球, 2004(5): 13, 7.
GUO D C. The ocean is the hope of human survival and development in the future[J]. Earth, 2004(5): 13, 7.
[2] 张继生, 唐子豪, 钱方舒. 海洋温差能发展现状与关键科技问题研究综述[J]. 河海大学学报(自然科学版), 2019, 47(1): 55-64.
ZHANG J S, TANG Z H, QIAN F S.A review of recent advances and key technologies in ocean thermal energy conversion[J]. Journal of Hohai University(natural sciences), 2019, 47(1): 55-64.
[3] SEGURA E, MORALES R, SOMOLINOS J A.A strategic analysis of tidal current energy conversion systems in the European Union[J]. Applied energy, 2018, 212: 527-551.
[4] D’ARSONAL A. Utilization des forces naturelles[J]. La Rev. Sci, 1881(17): 370-372.
[5] CLAUDE G.Power from the tropical seas[J]. Mechanical engineering, 1930, 52(12): 1039-1044.
[6] UEHARA H, IKEGAMI Y, NISHIDA T.Performance analysis of OTEC system using a cycle with absorption and extraction processes[J]. Transactions of the Japan Society of Mechanical Engineers, series B, 1998, 64(624): 2750-2755.
[7] YASUNAGA T, IKEGAMI Y, MONDE M.Performance test of OTEC with ammonia/water as working fluid using shell and plate type heat exchangers (effects of heat source temperature and flow rate)[J]. Nihon Kikai Gakkai Ronbunshu, B Hen/transactions of the Japan Society of Mechanical Engineers, part B, 2008, 74(2): 445-452.
[8] 甘巧巧, 程燕. 环境规制、 火电产业与地区碳排放强度[J]. 经营与管理, 2023(10): 170-176.
GAN Q Q, CHENG Y.Environmental regulation, thermal power industry and regional carbon emission intensity[J]. Operation and management, 2023(10): 170-176.
[9] 彭景平, 陈凤云, 刘伟民, 等. 海洋温差发电技术的现状及其商业化可行性探讨[J]. 绿色科技, 2012(11): 241-243.
PENG J P, CHEN F Y, LIU W M, et al.Current situation and commercialization feasibility of ocean thermal energy conversion[J]. Journal of green science and technology, 2012(11): 241-243.
[10] 彭景平, 葛云征, 陈凤云, 等. 一种新型高效海洋温差能热力循环性能研究[J]. 太阳能学报, 2021, 42(5): 60-66.
PENG J P, GE Y Z, CHEN F Y, et al.Performance study on a new high-efficiency thermodynamic cycle of ocean thermal energy conversion[J]. Acta energiae solaris sinica, 2021, 42(5): 60-66.
[11] TURTON R, SHAEIWITZ J A, BHATTACHARYYA D, et al.Analysis, synthesis, and design of chemical processes[M]. 5th ed. Pearson Education, 2018.
[12] 孙兰义, 刘立新, 马占华. 换热器工艺设计[M]. 2版. 北京: 中国石化出版社, 2020.
SUN L Y, LIU L X, MA Z H.Thermal design of heat exchangers[M]. 2nd ed. Beijing: China Petrochemical Press, 2020.
[13] 吴双应, 汪菲, 肖兰. 基于低温烟气余热发电的Kalina循环热经济性能分析[J]. 化工学报, 2017, 68(3): 1170-1177.
WU S Y, WANG F, XIAO L.Thermo-economic performance analysis of Kalina cycle based on low temperature flue gas waste heat power generation[J]. CIESC journal, 2017, 68(3): 1170-1177.
[14] 仇汝臣, 范宁, 刘新新. 基于ASPEN PLUS利用海洋温差能发电的模拟与优化[J]. 当代化工, 2015, 44(9): 2232-2234, 2256.
QIU R C, FAN N, LIU X X.Simulation and optimization of power generation by ocean thermal energy based on ASPEN PLUS[J]. Contemporary chemical industry, 2015, 44(9): 2232-2234, 2256.
[15] GOTO S, MOTOSHIMA Y, SUGI T, et al.Construction of simulation model for OTEC plant using Uehara cycle[J]. Electrical engineering in Japan, 2011, 176(2): 1-13.
PDF(2175 KB)

Accesses

Citation

Detail

Sections
Recommended

/