ULTRA-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON KMEANS++-BI-LSTM

Guan Songze, Tang Yuben, Cai Zheng, Wu Lingtao, Zheng Hanbo, Qin Tuanfa

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 170-174.

PDF(1871 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1871 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 170-174. DOI: 10.19912/j.0254-0096.tynxb.2022-1294

ULTRA-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON KMEANS++-BI-LSTM

  • Guan Songze1, Tang Yuben2, Cai Zheng3, Wu Lingtao3, Zheng Hanbo2, Qin Tuanfa3,4
Author information +
History +

Abstract

A new ultra-short-term prediction scheme for solar irradiance is proposed to address the uncertainty and stochastic fluctuations of surface solar radiation, which in turn has an impact on the stability of large-scale photovoltaic power grid connection to the power system. The scheme uses Pearson correlation analysis and the Kmeans++ algorithm in unsupervised learning to filter multiple meteorological data, identify and classify key meteorological data and add labels to them, and then feed the labelled key meteorological data into a bi-directional long-short term memory network prediction model to achieve a 10-minute ultra-short-term forecast of solar irradiance. The results show that the proposed prediction model has lower root mean square error and lower mean absolute error than the currently used models.

Key words

solar radiation / forecasting / cluster analysis / ultra-short-term / bi-directional long short-term memory network

Cite this article

Download Citations
Guan Songze, Tang Yuben, Cai Zheng, Wu Lingtao, Zheng Hanbo, Qin Tuanfa. ULTRA-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON KMEANS++-BI-LSTM[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 170-174 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1294

References

[1] ZHU T T, ZHOU H, WEI H K, et al.Inter-hour direct normal irradiance forecast with multiple data types and time-series[J]. Journal of modern power systems and clean energy, 2019, 7(5): 1319-1327.
[2] LORENZ E, SCHEIDSTEGER T, HURKA J, et al.Regional PV power prediction for improved grid integration[J]. Progress in photovoltaics: research and applications, 2011, 19(7): 757-771.
[3] CHU Y H, LI M Y, COIMBRA C F M, et al. Intra-hour irradiance forecasting techniques for solar power integration: a review[J]. Iscience, 2021, 24(10): 103136.
[4] PEDRO H T C, LARSON D P, COIMBRA C F M. A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods[J]. Journal of renewable and sustainable energy, 2019, 11(3): 036102.
[5] LARSON D P, NONNENMACHER L, COIMBRA C F M. Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest[J]. Renewable energy, 2016, 91: 11-20.
[6] 米增强, 王飞, 杨光, 等. 光伏电站辐照度ANN预测及其两维变尺度修正方法[J]. 太阳能学报, 2013, 34(2): 251-259.
Mi Z Q, WANG F, YANG G, et al.ANN based irradiance forecast of photovoltaic power plant and two dimensions variable scale modification method for the forecast value[J]. Acta energiae solaris sinica, 2013, 34(2): 251-259.
[7] INMAN R H, PEDRO H T C, COIMBRA C F M. Solar forecasting methods for renewable energy integration[J]. Progress in energy and combustion science, 2013, 39(6): 535-576.
[8] CHU Y H, URQUHART B, GOHARI S M I, et al. Short-term reforecasting of power output from a 48 MWe solar PV plant[J]. Solar energy, 2015, 112: 68-77.
[9] 马燕峰, 蒋云涛, 郝毅, 等. 基于非线性自回归神经网络的GHI预测[J]. 太阳能学报, 2019, 40(3): 733-740.
MA Y F, JIANG Y T, HAO Y, et al.GHI forecast based on nonlinear autoregressive neural network[J]. Acta energiae solaris sinica, 2019, 40(3): 733-740.
[10] 赵书强, 尚煜东, 杨燕燕, 等. 基于长短期记忆神经网络的地表太阳辐照度预测[J]. 太阳能学报, 2021, 42(3): 383-388.
ZHAO S Q, SHANG Y D, YANG Y Y, et al.Short-term solar irradiation forecast based on lstm neural network[J]. Acta energiae solaris sinica, 2021, 42(3): 383-388.
[11] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-BI-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
PDF(1871 KB)

Accesses

Citation

Detail

Sections
Recommended

/