DC SERIES ARC FAULT FEATURE EXTRACTION FOR PHOTOVOLTAIC SYSTEM BASED ON DYNAMIC TIME WARPING

Li Xin, Gao Wei, Yang Gengjie

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 82-89.

PDF(2594 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2594 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 82-89. DOI: 10.19912/j.0254-0096.tynxb.2022-1332

DC SERIES ARC FAULT FEATURE EXTRACTION FOR PHOTOVOLTAIC SYSTEM BASED ON DYNAMIC TIME WARPING

  • Li Xin, Gao Wei, Yang Gengjie
Author information +
History +

Abstract

In light of challenges encountered in extracting DC series arc fault features within photovoltaic (PV) system and the observed limitations in algorithm generalization and adaptability, this study introduces a novel series arc fault feature extraction method based on dynamic time warping (DTW). Initially, the moving average (MA) value of the current signal is calculated to identify the mutation event and collect the abnormal signal. Then, the singular spectrum analysis (SSA) is used to remove the trend component of abnormal signals and reduce the differences between different PV system signals. Following this, the DTW distance of the signal is calculated to extract the valid features. In the end, the waveform factor of the identified feature vector serves as the diagnostic criterion to identify the arc fault, short circuit fault and the interference events caused by inverter start-up and irradiance mutation. The experimental results show that the arc fault identification method based on the proposed feature extraction is not only fast and highly recognizable, but also suitable for different inverter systems, has strong adaptability, and the comprehensive performance is better than that of the comparison method.

Key words

photovoltaic system / electric arcs / fault detection / dynamic time warping(DTW) / singular spectrum analysis(SSA)

Cite this article

Download Citations
Li Xin, Gao Wei, Yang Gengjie. DC SERIES ARC FAULT FEATURE EXTRACTION FOR PHOTOVOLTAIC SYSTEM BASED ON DYNAMIC TIME WARPING[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 82-89 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1332

References

[1] DHAR S, PATNAIK R K, DASH P K.Fault detection and location of photovoltaic based DC microgrid using differential protection strategy[J]. IEEE transactions on smart grid, 2018, 9(5): 4303-4312.
[2] 龙官微, 穆海宝, 张大宁, 等. 基于多特征融合神经网络的串联电弧故障识别技术[J]. 高电压技术, 2021, 47(2): 463-471.
LONG G W, MU H B, ZHANG D N, et al.Series arc fault detection technology based on multi-feature fusion neural network[J]. High voltage engineering, 2021, 47(2): 463-471.
[3] SIDHU T S, SACHDEV M S, SAGOO G S.Detection and location of low-level arcing faults in metal-clad electrical apparatus[C]//2001 Seventh International Conference on Developments in Power System Protection (IEE). Amsterdam, Netherlands, 2002: 157-160.
[4] XIONG Q, JI S C, ZHU L Y, et al.A novel DC arc fault detection method based on electromagnetic radiation signal[J]. IEEE transactions on plasma science, 2017, 45(3): 472-478.
[5] CHEN S, LU Q S, MENG Y, et al.Hardware implementation of series arc fault detection algorithm for different DC resistive systems[C]//2019 IEEE Holm Conference on Electrical Contacts. Milwaukee, WI, USA, 2019: 245-249.
[6] 刘璇, 熊兰, 王韵, 等. 光伏电站串联型直流电弧的检测算法与保护实验研究[J]. 太阳能学报, 2022, 43(1): 348-355.
LIU X, XIONG L, WANG Y, et al.Experimental study on detection algorithm and protection of DC series arc in photovoltaic station[J]. Acta energiae solaris sinica, 2022, 43(1): 348-355.
[7] 吴春华, 徐文新, 李智华. 光伏系统直流电弧故障检测方法及其抗干扰研究[J]. 中国电机工程学报, 2018, 38(12): 3546-3555, 14.
WU C H, XU W X, LI Z H, et al.Study on detection method and its anti-interference of DC arc fault for photovoltaic system[J]. Proceedings of the CSEE, 2018, 38(12): 3546-3555, 14.
[8] 孟羽, 陈思磊, 吴子豪, 等. 基于随机共振方法增强光伏直流故障电弧检测特征的研究[J]. 中国电机工程学报, 2022, 42(6): 2396-2407.
MENG Y, CHEN S L, WU Z H, et al.Research on feature enhancement of DC arc fault detection in photovoltaic systems based on stochastic resonance[J]. Proceedings of the CSEE, 2022, 42(6): 2396-2407.
[9] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229-238.
HUANG Y W, PENG D G, YAO J, et al.Ultra-short-term photovoltaic power forecast of TD-BP neural network based on SSA and K-means[J]. Acta energiae solaris sinica, 2021, 42(4): 229-238.
[10] 肖白, 肖志峰, 姜卓, 等. 基于降噪自编码器、奇异谱分析和长短期记忆神经网络的空间电力负荷态势感知[J]. 中国电机工程学报, 2021, 41(14): 4858-4867.
XIAO B, XIAO Z F, JIANG Z, et al.Spatial load situation awareness based on denoising autoencoder, singular spectrum analysis and long short-term memory neural networks[J]. Proceedings of the CSEE, 2021, 41(14): 4858-4867.
[11] 林顺富, 詹银枫, 李毅, 等. 基于CNN-BiLSTM与DTW的非侵入式住宅负荷监测方法[J]. 电网技术, 2022, 46(5): 1973-1981.
LIN S F, ZHAN Y F, LI Y, et al.Non-intrusive residential load monitoring method based on CNN-BiLSTM and DTW[J]. Power system technology, 2022, 46(5): 1973-1981.
[12] 万书亭, 马晓棣, 陈磊, 等. 基于振动信号短时能熵比与DTW的高压断路器状态评估及故障诊断[J]. 高电压技术, 2020, 46(12): 4249-4257.
WAN S T, MA X D, CHEN L, et al.State evaluation and fault diagnosis of high-voltage circuit breaker based on short-time energy entropy ratio of vibration signal and DTW[J]. High voltage engineering, 2020, 46(12): 4249-4257.
[13] 童晓阳, 杨明杰, 张广骁. 基于改进DTW的行波波形相似性的高压直流输电线路保护方案[J]. 中国电机工程学报, 2020, 40(12): 3878-3888.
TONG X Y, YANG M J, ZHANG G X.A protection scheme for HVDC transmission line based on traveling waveform similarity using improved DTW algorithm[J]. Proceedings of the CSEE, 2020, 40(12): 3878-3888.
[14] LE V, YAO X, MILLER C, et al.Series DC arc fault detection based on ensemble machine learning[J]. IEEE transactions on power electronics, 2020, 35(8): 7826-7839.
[15] CAO Y, LI J, SUMNER M,et al.Arc fault generation and detection in DC systems[C]//2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Hong Kong, China, 2014: 1-5.
[16] KIM J C, KWAK S S.Frequency-domain characteristics of series DC arcs in photovoltaic systems with voltage-source inverters[J]. Applied sciences, 2020, 10(22): 8042.
[17] CAI X R, WAI R J.Intelligent DC arc-fault detection of solar PV power generation system via optimized VMD-based signal processing and PSO-SVM classifier[J]. IEEE journal of photovoltaics, 2022, 12(3): 1058-1077.
PDF(2594 KB)

Accesses

Citation

Detail

Sections
Recommended

/