STUDY ON CARBON FOOTPRINT OF CRYSTALLINE SILICON ANDPEROVSKITE PHOTOVOLTAIC MODULES

Zhuang Yuan, Wen Jincheng, Bian Yuliang, Mao Xiaoxiao, Li Majie, Ye Xiaojun

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 41-46.

PDF(1663 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1663 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 41-46. DOI: 10.19912/j.0254-0096.tynxb.2022-1408

STUDY ON CARBON FOOTPRINT OF CRYSTALLINE SILICON ANDPEROVSKITE PHOTOVOLTAIC MODULES

  • Zhuang Yuan1, Wen Jincheng2, Bian Yuliang1, Mao Xiaoxiao1, Li Majie1, Ye Xiaojun1
Author information +
History +

Abstract

Photovoltaic technologies have shown a rapid been develop ment trend due to promote global clean energy applications. To evaluate the environment impact of solar cell during procluction and manufacturing process, crystalline silicon solar cell industry technology including passivated emitter and rear cell(PERC), tunnel oxide passivated contact (TOPCon)solar cell and heterojunction (HJT)solar cell, and also the emerging perovskite solar cell(PSCs) , were estimated with the GaBi software and the life cycle assessment(LCA) approach. As the calculation results,typical carbon footprints of the four types of photovoltaic modules are 469.25, 474.24, 427.98 and 500.55 kg CO2/kW respectively. For crystalline silicon photovoltaic module, the carbon footprint caused by silicon wafer production is more than 50%. Currently PSCs module has a largecarbon footprint due to its low inclustriul:zation efficiency.

Key words

carbon footprint / photovoltaic modules / crystalline silicon / perovskite / life cycle

Cite this article

Download Citations
Zhuang Yuan, Wen Jincheng, Bian Yuliang, Mao Xiaoxiao, Li Majie, Ye Xiaojun. STUDY ON CARBON FOOTPRINT OF CRYSTALLINE SILICON ANDPEROVSKITE PHOTOVOLTAIC MODULES[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 41-46 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1408

References

[1] BLAKERS A W, WANG A H, MILNE A M, et al.22.8% efficient silicon solar cell[J]. Applied physics letters, 1989, 55(13): 1363-1365.
[2] PEIBST R, RÖMER U, LARIONOVA Y, et al. Working principle of carrier selective poly-Si/c-Si junctions: is tunnelling the whole story[J]. Solar energy materials and solar cells, 2016, 158: 60-67.
[3] ADACHI D, HERNÁNDEZ J L, YAMAMOTO K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency[J]. Applied physics letters, 2015, 107(23): 233506.
[4] CELIK I, SONG Z N, CIMAROLI A J, et al.Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab[J]. Solar energy materials and solar cells, 2016, 156: 157-169.
[5] JIA X J, ZHOU C L, TANG Y H, et al.Life cycle assessment on PERC solar modules[J]. Solar energy materials and solar cells, 2021, 227: 111112.
[6] FTHENAKIS V, LECCISI E.Updated sustainability status of crystalline silicon-based photovoltaic systems: life-cycle energy and environmental impact reduction trends[J]. Progress in photovoltaics: research and applications, 2021, 29: 1068-1077.
[7] COSTANZA R.The dynamics of the ecological footprint concept[J]. Ecological economics, 2000, 32(3): 341-345.
[8] 孙晓慧. 纺织产品碳足迹评价方法及指标[J]. 中国纤检, 2021(8): 120-122.
SUN X H.Exploration of carbon footprint assessment and implement on textiles[J]. China fiber inspection, 2021(8): 120-122.
[9] 梁佳. 建筑并网光伏系统生命周期环境影响研究[D]. 天津: 天津大学, 2012: 31-33.
LIANG J.Environmental effects investigating for the grid-connected BAPV[D]. Tianjin: Tianjin University, 2012: 31-33.
[10] GB/T2589—2008, 综合能耗计算通则[S].
GB/T2589—2008, General principles for calculation of the comprehensive energy consumption[S].
[11] 俞海勇, 曾杰, 赵敏. 典型装饰装修材料生命周期能耗和碳排放量[J]. 建筑科学, 2014, 30(4): 21-25.
YU H Y, ZENG J, ZHAO M.Life-cycle energy consumption and carbon emission of typical decoration materials[J]. Building science, 2014, 30(4): 21-25.
[12] PHOTON Europe GmbH. Market survey on deposition equipment for transparent conductive oxide layers[J]. Photon international, 2011: 160-175.
[14] 林淙. 纤纳光电α组件通过全球首个IEC稳定性全体系认证[RB/OL]. https://finance.eastmoney.com/a2/202301 062606980523.html, 2023-01-06.
LIN C. Fiber-optic α The module has passed the world’s first IEC stability system certification[RB/OL]. https://finance. eastmoney. com/a2/202301062606980523. html, 2023-01-06.
[15] DU M Y, ZHAO S, DUAN L J, et al.Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules[J]. Joule, 2022, 6(8): 1931-1943.
PDF(1663 KB)

Accesses

Citation

Detail

Sections
Recommended

/