RESEARCH ON ADAPTIVE BACKSTEPPING CONTROL OF PERMANENT MAGNET WIND POWER SYSTEM BASED ON VIENNA

Wang Junrui, Wang Libao, Qiao Xuanjing, Wu Xinju

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 171-178.

PDF(5128 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5128 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 171-178. DOI: 10.19912/j.0254-0096.tynxb.2022-1447

RESEARCH ON ADAPTIVE BACKSTEPPING CONTROL OF PERMANENT MAGNET WIND POWER SYSTEM BASED ON VIENNA

  • Wang Junrui, Wang Libao, Qiao Xuanjing, Wu Xinju
Author information +
History +

Abstract

Aiming at the uncertainties of nonlinear terms in permanent magnet synchronous motors and the adverse effects of system parameter perturbation, an adaptive backstepping control strategy based on VIENNA permanent magnet wind power system is proposed. The VIENNA rectification topology is used to maximize the power density of the whole machine, reduce harmonic interference, and improve system reliability. The system control law and parameter self-adaptive law are obtained through self-adaptive backstepping control, which solves the nonlinearity of the system and realizes the parameter self-adaption of the stator resistance and load torque, thereby improving the anti-interference ability of the system. Simulation results show that the control system has strong robustness.

Key words

permanent magnet wind power system / VIENNA rectifier / adaptive backstepping control / robustness

Cite this article

Download Citations
Wang Junrui, Wang Libao, Qiao Xuanjing, Wu Xinju. RESEARCH ON ADAPTIVE BACKSTEPPING CONTROL OF PERMANENT MAGNET WIND POWER SYSTEM BASED ON VIENNA[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 171-178 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1447

References

[1] 覃盛琼, 程朗, 何占启, 等. 风力发电系统研究与应用前景综述[J]. 机械设计, 2021, 38(8): 1-8.
QIN S Q, CHENG L, HE Z Q, et al.Review of research and application on the wind power-generation system[J]. Journal of machine design, 2021, 38(8): 1-8.
[2] 龙莉娟. 三相三线制VIENNA整流器研究[D]. 杭州: 浙江大学, 2019.
LONG L J.Research on three-phase three-line VIENNA rectifier[D]. Hangzhou: Zhejiang University, 2019.
[3] 王久和, 常伟, 陈启丽. 不同拓扑结构混合整流器性能评估[J]. 电工技术学报, 2017, 32(16): 212-222.
WANG J H, CHANG W, CHEN Q L.Performance evaluation research of different topology hybird rectifiers[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 212-222.
[4] BELKHIER Y, SHAW R N, BURES M, et al.Robust interconnection and damping assignment energy-based control for a permanent magnet synchronous motor using high order sliding mode approach and nonlinear observer[J]. Energy reports, 2022, 8: 1731-1740.
[5] 杨淑英, 穆港军, 谢震, 等. 正十二边形矢量集的永磁同步发电机磁链预测控制[J]. 太阳能学报, 2023, 44(3): 120-128.
YANG S Y, MU G J, XIE Z, et al.Flux predictive control for permanet magnet synchronous generators with dodecagonal vector set[J]. Acta energiae solaris sinica, 2023, 44(3): 120-128.
[6] 葛乐, 李强, 张伟, 等. 自储能多端背靠背柔直投影自适应指令滤波反推控制[J]. 太阳能学报, 2020, 41(9): 61-69.
GE L, LI Q, ZHANG W, et al.Projection adaptive command-filtered backstepping control for self-energy storage MBTB VSC-HVDC[J]. Acta energiae solaris sinica, 2020, 41(9): 61-69.
[7] 杨俊华, 蔡浩然, 邹子君, 等. 双馈风电系统混沌运动分析及解耦自适应反步法控制[J]. 太阳能学报, 2019, 40(12): 3605-3612.
YANG J H, CAI H R, ZOU Z J, et al.Chaos analysis and decoupling adaptive backstepping control of doubly fed wind power system[J]. Acta energiae solaris sinica, 2019, 40(12): 3605-3612.
[8] BELKHIER Y, ACHOUR A.An intelligent passivity-based backstepping approach for optimal control for grid-connecting permanent magnet synchronous generator-based tidal conversion system[J]. International journal of energy research, 2021, 45(4): 5433-5448.
[9] 周尔卓, 沈艳霞. 基于RBF神经网络的直驱风力发电系统反推控制[J]. 微特电机, 2022, 50(6): 41-45.
ZHOU E Z, SHEN Y X.Backstepping control of direct-driven wind power generation system based on RBF neural network[J]. Small & special electrical machines, 2022, 50(6): 41-45.
[10] 吴定会, 杨德亮, 肖仁. 基于LPV观测器的永磁同步电机反推控制[J]. 测控技术, 2019, 38(8): 113-118.
WU D H, YANG D L, XIAO R.Backstepping control of permanent magnet synchronous motor based on LPV observer[J]. Measurement & control technology, 2019, 38(8): 113-118.
[11] 廖茜, 邱晓燕, 江润洲, 等. 风电机组变桨距系统的反推滑模控制[J]. 电气传动, 2015, 45(2): 45-49.
LIAO Q, QIU X Y, JIANG R Z, et al.Backstepping sliding mode control of wind turbine variable pitch system[J]. Electric drive, 2015, 45(2): 45-49.
[12] 张开明, 史宏俊, 郭涛. 采用滑模自适应控制的永磁同步风力发电系统最大功率控制[J]. 电力系统及其自动化学报, 2019, 31(7): 143-150.
ZHANG K M, SHI H J, GUO T.Maximum power control of permanent magnet synchronous wind power generation system based on sliding-mode adaptive control[J]. Proceedings of the CSU-EPSA, 2019, 31(7): 143-150.
[13] 戴宇辰, 许德智, 杨中亚, 等. 带有指令滤波的孤岛分布式能源系统反步控制[J]. 济南大学学报(自然科学版), 2018, 32(5): 377-383, 393.
DAI Y C, XU D Z, YANG Z Y, et al.Backstepping control for islanded distributed energy resource system with command filter[J]. Journal of University of Ji'nan (science and technology), 2018, 32(5): 377-383, 393.
[14] 张兴华, 唐其太. 考虑参数和负载不确定性的内置式永磁同步电机自适应反步控制[J]. 控制与决策, 2016, 31(8): 1509-1512.
ZHANG X H, TANG Q T.Adaptive backstepping control of interior permanent magnet synchronous motors considering parameter and load uncertainties[J]. Control and decision, 2016, 31(8): 1509-1512.
[15] 祝可可, 阮琳. 永磁直驱风力发电机自抗扰技术及其无位置传感器控制策略[J]. 太阳能学报, 2022, 43(10): 266-274.
ZHU K K, RUAN L.Active disturbance rejection technology for permanent magnet direct drive wind generator and its position sensorless control strategy[J]. Acta energiae solaris sinica, 2022, 43(10): 266-274.
[16] 陈集思, 杨俊华, 侯祖锋, 等. 无刷双馈风力发电系统变阻尼无源性控制[J]. 电测与仪表, 2016, 53(21): 41-47.
CHEN J S, YANG J H, HOU Z F, et al.Passivity-based control of brushless doubly-fed wind power generation system with flexible damping[J]. Electrical measurement & instrumentation, 2016, 53(21): 41-47.
[17] ALILI A, CAMARA M B, DAKYO B.Vienna rectifier-based control of a PMSG wind turbine generator[J]. Processes, 2022, 10(2): 413.
[18] 胡于桥. 基于Vienna整流器级联的双三相永磁风电系统控制策略研究[D]. 长沙: 湖南大学, 2019.
HU Y Q.Research on control strategy of dual three phase permanent magnet wind power system based on cascaded Vienna rectifiers[D]. Changsha: Hunan University, 2019.
[19] 李山, 贺梧童, 郭强, 等. 电网电压不平衡条件下VIENNA整流器滑模控制策略[J]. 电源学报, 2022, 20(3): 52-61.
LI S, HE W T, GUO Q, et al.Sliding mode control strategy for VIENNA rectifier under unbalanced grid voltage conditions[J]. Journal of power supply, 2022, 20(3): 52-61.
[20] 黄辉先, 肖泽广, 陈思溢, 等. Vienna整流器模型预测直接功率控制研究[J]. 控制工程, 2021, 28(1): 62-67.
HUANG H X, XIAO Z G, CHEN S Y, et al.Research on model predictive direct power control of Vienna rectifier[J]. Control engineering of China, 2021, 28(1): 62-67.
[21] WANG X J, CHEN Y, LU Y L, et al.Dynamic surface method-based adaptive backstepping control for the permanent magnet synchronous motor on parameter identification[J]. Proceedings of the institution of mechanical engineers, part I: journal of systems and control engineering, 2019, 233(9): 1172-1181.
[22] 魏静, 郭剑鹏, 张世界, 等. 大型风力机齿轮传动系统机电耦合动态特性研究[J]. 太阳能学报, 2022, 43(8): 300-308.
WEI J, GUO J P, ZHANG S J, et al.Study on electromechanical coupling dynamic characteristics of large wind turbine gear transmission system[J]. Acta energiae solaris sinica, 2022, 43(8): 300-308.
[23] WANG F, WANG J M, WANG K, et al.Adaptive backstepping sliding mode control of uncertain semi-strict nonlinear systems and application to permanent magnet synchronous motor[J]. Journal of systems science and complexity, 2021, 34(2): 552-571.
[24] 张伟, 黄淮, 倪双飞, 等. 基于指令滤波的直驱永磁风机自适应有限时间反推控制[J]. 微电机, 2021, 54(1): 75-81.
ZHANG W, HUANG H, NI S F, et al.Finite-time adaptive backstepping control of direct-drive permanent magnet wind generator with command-filter[J]. Micromotors, 2021, 54(1): 75-81.
PDF(5128 KB)

Accesses

Citation

Detail

Sections
Recommended

/