LOAD SUPPRESSION OF SPAR-TYPES OFFSHORE FLOATING WIND TURBINE BASED ON FUZZY LQR

Han Yaozhen, Liu Shuang, Yang Wenxiang, Hou Mingdong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 188-196.

PDF(2150 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2150 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 188-196. DOI: 10.19912/j.0254-0096.tynxb.2022-1462

LOAD SUPPRESSION OF SPAR-TYPES OFFSHORE FLOATING WIND TURBINE BASED ON FUZZY LQR

  • Han Yaozhen, Liu Shuang, Yang Wenxiang, Hou Mingdong
Author information +
History +

Abstract

Complex environmental changes are prone to cause instability of floating offshore wind turbines. A new pitch control scheme which is easy for engineering application is proposed based on fuzzy LQR and fuzzy PI to maintain the output power stabilization of the floating wind turbine, restrain the movement of the floating platform, and reduce the fatigue load of the blade root and tower foundation. The fuzzy PI dynamically selects the desired PI gain according to the variation of the generator rotor speed error. The fuzzy LQR adaptively adjusts the closed-loop feedback gain based on fuzzy rules to further reduce the fatigue load of blade root and tower while ensuring the output power of wind turbine and the stability of floating platform. Co-simulation is executed based on FAST and Matlab/Simulink to verify the effectiveness and superiority of the proposed scheme under different environmental conditions. The time and frequency domain analysis show that the proposed scheme has a significant improvement in reducing the out-of-plane load at the blade root and the lateral load at the tower base compared with PI control.

Key words

offshore wind turbines / loads / optimal control systems / fuzzy LQR

Cite this article

Download Citations
Han Yaozhen, Liu Shuang, Yang Wenxiang, Hou Mingdong. LOAD SUPPRESSION OF SPAR-TYPES OFFSHORE FLOATING WIND TURBINE BASED ON FUZZY LQR[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 188-196 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1462

References

[1] 蔡新, 张洪建, 王浩, 等. 面向深远海的新型海上风力机浮式平台水动力性能研究[J]. 中国电机工程学报, 2022, 42(12): 4339-4352.
CAI X, ZHANG H J, WANG H, et al.Research on the hydrodynamic performance of a novel floating platform of the offshore wind turbine in deep water[J]. Proceedings of the CSEE, 2022, 42(12): 4339-4352.
[2] HA K, TRUONG H V A, DANG T D, et al. Recent control technologies for floating offshore wind energy system: a review[J]. International journal of precision engineering and manufacturing-green technology, 2021, 8(1): 281-301.
[3] GAMBIER A, NAZARUDDIN Y Y.Collective pitch control with active tower damping of a wind turbine by using a nonlinear PID approach[J]. IFAC-PapersOnLine, 2018, 51(4): 238-243.
[4] LASHEEN A, ELNAGGAR M, YASSIN H.Adaptive control design and implementation for collective pitch in wind energy conversion systems[J]. ISA transactions, 2020, 102: 251-263.
[5] LI S Z, HAN Y Z, PAN W G, et al.Variable-gain higher-order sliding mode pitch control of floating offshore wind turbine[J]. Journal of marine science and engineering, 2021, 9(11): 1172.
[6] SARKAR S, CHEN L, FITZGERALD B, et al.Multi-resolution wavelet pitch controller for spar-type floating offshore wind turbines including wave-current interactions[J]. Journal of sound and vibration, 2020, 470: 115170.
[7] DA CUNHA BARROSO RAMOS R L. Effect of turbulence intensity on the linear quadratic control of spar buoy floating wind turbines[J]. Marine systems & ocean technology, 2021, 16(2): 84-98.
[8] 闫学勤, 王维庆, 王海云. 基于IQPI-R的风力机独立变桨距控制策略研究[J]. 太阳能学报, 2020, 41(10): 229-235.
YAN X Q, WANG W Q, WANG H Y.Research on individual pitch control strategy of wind turbines based on IQPI-R[J]. Acta energiae solaris sinica, 2020, 41(10): 229-235.
[9] SARKAR S.Individual blade pitch control strategies for spar-type floating offshore wind turbines[D]. Dublin: Trinity College Dublin, 2020.
[10] BOSSANYI E A.Individual blade pitch control for load reduction[J]. Wind energy, 2003, 6(2): 119-128.
[11] BOSSANYI E A, FLEMING P A, WRIGHT A D.Validation of individual pitch control by field tests on two- and three-bladed wind turbines[J]. IEEE transactions on control systems technology, 2013, 21(4): 1067-1078.
[12] ROH C, HA Y J, AHN H J, et al.A comparative analysis of the characteristics of platform motion of a floating offshore wind turbine based on pitch controllers[J]. Energies, 2022, 15(3): 716.
[13] PUSTINA L, LUGNI C, BERNARDINI G, et al.Control of power generated by a floating offshore wind turbine perturbed by sea waves[J]. Renewable and sustainable energy reviews, 2020, 132: 109984.
[14] RAACH S, SCHLIPF D, SANDNER F, et al.Nonlinear model predictive control of floating wind turbines with individual pitch control[C]//2014 American Control Conference. Portland, OR, USA, 2014: 4434-4439.
[15] 王博, 李春, 岳敏楠, 等. 海上浮式风力机叶片减载及平台运动控制研究[J]. 热能动力工程, 2020, 35(9): 120-126.
WANG B, LI C, YUE M N, et al.Platform motion control and blades load reduction for floating offshore wind turbines[J]. Journal of engineering for thermal energy and power, 2020, 35(9): 120-126.
[16] 杨显刚, 金鑫, 何玉林, 等. 基于LQR方法的大型风力机转矩控制建模与仿真[J]. 太阳能学报, 2015, 36(6): 1429-1434.
YANG X G, JIN X, HE Y L, et al.Modeling and simulation for torque control of large-scale wind turbine based on LQR method[J]. Acta energiae solaris sinica, 2015, 36(6): 1429-1434.
[17] SARKAR S, FITZGERALD B, BASU B.Individual blade pitch control of floating offshore wind turbines for load mitigation and power regulation[J]. IEEE transactions on control systems technology, 2021, 29(1): 305-315.
[18] MA Y, SCLAVOUNOS P D, CROSS-WHITER J, et al.Wave forecast and its application to the optimal control of offshore floating wind turbine for load mitigation[J]. Renewable energy, 2018, 128: 163-176.
[19] ASGHARNIA A, SHAHNAZI R, JAMALI A.Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms[J]. ISA transactions, 2018, 79: 27-44.
[20] LIU S, HAN Y Z, DU C Q, et al.Fuzzy PI control for grid-side converter of DFIG-based wind turbine system[C]//2021 40th Chinese Control Conference (CCC). Shanghai, China, 2021: 5788-5793.
PDF(2150 KB)

Accesses

Citation

Detail

Sections
Recommended

/