SECONDARY FREQUENCY CONTROL OF ISLANDED MICROGRID CONSIDERING WIND AND SOLAR STOCHASTICS

Zhong Cheng, Jiang Zhifu, Zhang Xiangyu, Chen Jikai, Li Yang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 523-533.

PDF(5110 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5110 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 523-533. DOI: 10.19912/j.0254-0096.tynxb.2022-1463

SECONDARY FREQUENCY CONTROL OF ISLANDED MICROGRID CONSIDERING WIND AND SOLAR STOCHASTICS

  • Zhong Cheng1,2, Jiang Zhifu2, Zhang Xiangyu2, Chen Jikai1,2, Li Yang2
Author information +
History +

Abstract

This paper proposed a model predictive control (MPC) secondary frequency control method considering wind and solar power generation stochastics. The extended state-space matrix including unknown stochastic power disturbance is established, and a Kalman filter is used to observe the unknown disturbance. The maximum available power of wind and solar DGs is estimated for establishing real-time variable constraints that prevent DGs output power from exceeding the limits. Through setting proper weight coefficients, wind and photovoltaic DGs are given priority to participate in secondary frequency control. The distributed restorative power of each DG is obtained by solving the quadratic programming(QP) optimal problem with variable constraints. Finally, a microgrid simulation model including multiple PV and wind DGs is built and performed in various scenarios compared to the traditional secondary frequency control method. The simulation results validated that the proposed method can enhance the frequency recovery speed and reduce the frequency deviation, especially in severe photovoltaic and wind fluctuations scenarios.

Key words

secondary frequency control / model predictive control / islanded microgrid / deloading control / stochastic input observer

Cite this article

Download Citations
Zhong Cheng, Jiang Zhifu, Zhang Xiangyu, Chen Jikai, Li Yang. SECONDARY FREQUENCY CONTROL OF ISLANDED MICROGRID CONSIDERING WIND AND SOLAR STOCHASTICS[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 523-533 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1463

References

[1] 陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J]. 电网技术, 2017, 41(10): 3095-3103.
CHEN G P, LI M J, XU T, et al.Practice and challenge of renewable energy development based on interconnected power grids[J]. Power system technology, 2017, 41(10): 3095-3103.
[2] 丁圣康, 刘璐裔. 微电网研究综述[J]. 大众标准化, 2021(22): 225-227.
DING S K, LIU L Y.Review of microgrid research[J]. Popular standardization, 2021(22): 225-227.
[3] 毕永健, 徐丙垠, 赵艳雷, 等. 同步定频微电网的并网/孤岛无缝切换控制策略[J]. 电网技术, 2022, 46(3): 923-933.
BI Y J, XU B Y, ZHAO Y L, et al.Seamless transfer control strategy between grid-connected and islanding operation for synchronous fixed-frequency microgrid[J]. Power system technology, 2022, 46(3): 923-933.
[4] 兰征, 刁伟业, 涂春鸣, 等. 含储能和氢燃料电池的孤岛微电网混合运行模式与功率协调策略研究[J]. 电网技术, 2022, 46(1): 156-164.
LAN Z, DIAO W Y, TU C M, et al.Research on hybrid operation mode and power coordination strategy of island microgrid with energy storage and hydrogen fuel cell[J]. Power system technology, 2022, 46(1): 156-164.
[5] 许志荣, 杨苹, 郑成立, 等. 孤岛型风柴储微电网运行情况分析[J]. 电网技术, 2016, 40(7): 1978-1984.
XU Z R, YANG P, ZHENG C L, et al.Operation analysis of isolated microgrid including wind turbine, diesel generator and battery storage[J]. Power system technology, 2016, 40(7): 1978-1984.
[6] 胡家欣, 胥国毅, 毕天姝, 等. 减载风电机组变速变桨协调频率控制方法[J]. 电网技术, 2019, 43(10): 3656-3663.
HU J X, XU G Y, BI T S, et al.A strategy of frequency control for deloaded wind turbine generator based on coordination between rotor speed and pitch angle[J]. Power system technology, 2019, 43(10): 3656-3663.
[7] 刘澧庆, 吴宁, 张焕亨, 等. 微电网经济型二次频率和电压控制的多目标优化模型及仿真验证[J]. 电网技术, 2019, 43(2): 521-530.
LIU L Q, WU N, ZHANG H H, et al.Multi-objective optimization model and its simulation verification for economical secondary frequency and voltage controls of microgrids[J]. Power system technology, 2019, 43(2): 521-530.
[8] 施永, 徐冬, 于鸿儒, 等. 基于系统辨识建模的微网二次电压频率控制器参数设计方法[J]. 电力系统自动化, 2020, 44(13): 89-97.
SHI Y, XU D, YU H R, et al.Parameter design method of secondary voltage and frequency regulation controller in microgrid based on system identification modeling[J]. Automation of electric power systems, 2020, 44(13): 89-97.
[9] MU C X, ZHANG Y, JIA H J, et al.Energy-storage-based intelligent frequency control of microgrid with stochastic model uncertainties[J]. IEEE transactions on smart grid, 2020, 11(2): 1748-1758.
[10] 李斌, 周林, 余希瑞, 等. 基于改进虚拟同步发电机算法的微网逆变器二次调频方案[J]. 电网技术, 2017, 41(8): 2680-2687.
LI B, ZHOU L, YU X R, et al.Secondary frequency regulation for microgrid inverters based on improving virtual synchronous generator[J]. Power system technology, 2017, 41(8): 2680-2687.
[11] MA L, ZHANG X D, RAO Y Q, et al.A robust model predictive control for multi-microgrids frequency control[C]//2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). Wuhan, China, 2021: 1637-1641.
[12] GBADEGA P A, SAHA A K.Load frequency control of a two-area power system with a stand-alone microgrid based on adaptive model predictive control[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(6): 7253-7263.
[13] LONG B, LIAO Y, CHONG K T, et al.Enhancement of frequency regulation in AC microgrid: a fuzzy-MPC controlled virtual synchronous generator[J]. IEEE transactions on smart grid, 2021, 12(4): 3138-3149.
[14] MORSTYN T, HREDZAK B, AGUILERA R P, et al.Model predictive control for distributed microgrid battery energy storage systems[J]. IEEE transactions on control systems technology, 2018, 26(3): 1107-1114.
[15] 李帅虎, 向丽珍, 向振宇, 等. 用于改善VSG频率响应的模型预测控制方法[J]. 高电压技术, 2021, 47(8): 2856-2864.
LI S H, XIANG L Z, XIANG Z Y, et al.MPC control method for improving VSG frequency response[J]. High voltage engineering, 2021, 47(8): 2856-2864.
[16] WANG Y, DELILLE G, BAYEM H, et al.High wind power penetration in isolated power systems-assessment of wind inertial and primary frequency responses[J]. IEEE transactions on power systems, 2013, 28(3): 2412-2420.
[17] 吴岩, 王玮, 曾国宏, 等. 四开关Buck-Boost变换器的多模式模型预测控制策略[J]. 电工技术学报, 2022, 37(10): 2572-2583.
WU Y, WANG W, ZENG G H, et al.Multi-mode model predictive control strategy for the four-switch buck-boost converter[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2572-2583.
[18] KROPOSKI B, JOHNSON B, ZHANG Y C, et al.Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy[J]. IEEE power and energy magazine, 2017, 15(2): 61-73.
[19] 杨海涛, 江晶晶, 赵敏, 等. 基于模型预测控制的区域综合能源系统运行优化方法[J]. 电气技术, 2022, 23(4): 7-13.
YANG H T, JIANG J J, ZHAO M, et al.Operational optimization method of regional integrated energy system based on model predictive control[J]. Electrical engineering, 2022, 23(4): 7-13.
[20] CHEN X T, WU W M, GAO N, et al.Finite control set model predictive control for LCL-filtered grid-tied inverter with minimum sensors[J]. IEEE transactions on industrial electronics, 2020, 67(12): 9980-9990.
[21] ZHANG Q, LI Y, DING Z W, et al.Self-adaptive secondary frequency regulation strategy of micro-grid with multiple virtual synchronous generators[J]. IEEE transactions on industry applications, 2020, 56(5): 6007-6018.
[22] 张伟亮, 张辉, 支娜, 等. 基于节点源荷电流差分的直流微电网储能变换器控制策略[J]. 电工技术学报, 2022, 37(9): 2199-2210.
ZHANG W L, ZHANG H, ZHI N, et al.Control strategy of DC microgrid energy storage converter based on node differential current[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2199-2210.
[23] 颜湘武, 徐韵, 李若瑾, 等. 基于模型预测控制含可再生分布式电源参与调控的配电网多时间尺度无功动态优化[J]. 电工技术学报, 2019, 34(10): 2022-2037.
YAN X W, XU Y, LI R J, et al.Multi-time scale reactive power optimization of distribution grid based on model predictive control and including RDG regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2022-2037.
[24] 马伟栋, 高丙朋, 杨武帮, 等. 引入权值修正预测控制的风电叶片自适应组合抑振策略研究[J]. 太阳能学报, 2022, 43(8): 382-390.
MA W D, GAO B P, YANG W B, et al.Research on adaptive combined vibration suppression strategy of wind power blade based on weight modified predictive control[J]. Acta energiae solaris sinica, 2022, 43(8): 382-390.
[25] 蔡鹏程, 文传博. 基于比率一致性算法的孤岛微电网分布式二次频率控制[J]. 太阳能学报, 2020, 41(10): 74-81.
CAI P C, WEN C B.Secondary frequency control of islanded microgrids based on ratio consensue algorithm[J]. Acta energiae solaris sinica, 2020, 41(10): 74-81.
[26] KHALGHANI M R, SOLANKI J, KHUSHALANI SOLANKI S, et al.Stochastic secondary frequency control of islanded microgrid under uncertainties[J]. IEEE systems journal, 2021, 15(1): 1056-1065.
PDF(5110 KB)

Accesses

Citation

Detail

Sections
Recommended

/