ECONOMIC OPTIMIZATION SCHEDULING OF MULTI-MICROGRID SYSTEM BASED ON MASTER-SLAVE GAME UNDER MULTI-AGENT TECHNOLOGY

Ma Yue, Lin Hong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 574-582.

PDF(2287 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2287 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 574-582. DOI: 10.19912/j.0254-0096.tynxb.2022-1498

ECONOMIC OPTIMIZATION SCHEDULING OF MULTI-MICROGRID SYSTEM BASED ON MASTER-SLAVE GAME UNDER MULTI-AGENT TECHNOLOGY

  • Ma Yue, Lin Hong
Author information +
History +

Abstract

In order to realize the mutual aid of electric energy among multiple microgrids with different stakeholders in the same region, and come up with an economic optimal scheduling method of multi-microgrid system based on master-slave game under multi-agent technology. Firstly, a multi-microgrid system energy interaction framework, in which the multi-microgrid agents (MMGA) set the internal electricity price of the system, and the microgrid agents (MGA) respond to the electricity price is designed. Secondly, the fuzzy chance constraint of credibility theory to deal with the impact of renewable energy and load uncertainty on dispatching decisions is introduced . Based on the master-slave game, the economic optimal dispatching model of multi-microgrid system with fuzzy chance constraint is established . Finally, the genetic algorithm nested CPLEX solver is used to deal with the problem. The simulation results show that the proposed method not only improves the economic benefits of all parties, but also reduces the interactive power between the multi-microgrid system and the power grid, which is conducive to the local consumption of distributed resources and the safe and stable operation of the power grid.

Key words

distributed power generation / microgrids / uncertainty analysis / master-slave game / multi-agent technology / optimization dispatch

Cite this article

Download Citations
Ma Yue, Lin Hong. ECONOMIC OPTIMIZATION SCHEDULING OF MULTI-MICROGRID SYSTEM BASED ON MASTER-SLAVE GAME UNDER MULTI-AGENT TECHNOLOGY[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 574-582 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1498

References

[1] HUANG H Y, ZHOU M, ZHANG S Y, et al.Exploiting the operational flexibility of wind integrated hybrid AC/DC power systems[J]. IEEE transactions on power systems, 2021, 36(1): 818-826.
[2] 鲁宗相, 王彩霞, 闵勇, 等. 微电网研究综述[J]. 电力系统自动化, 2007, 31(19): 100-107.
LU Z X, WANG C X, MIN Y, et al.Overview on microgrid research[J]. Automation of electric power systems, 2007, 31(19): 100-107.
[3] ZHANG W, XU Y L.Distributed optimal control for multiple microgrids in a distribution network[J]. IEEE transactions on smart grid, 2019, 10(4):3765-3779.
[4] 李鹏, 吴迪凡, 李雨薇, 等. 基于谈判博弈的多微网综合能源系统多目标联合优化配置[J]. 电网技术, 2020, 44(10): 3680-3688.
LI P, WU D F, LI Y W, et al.Multi-objective union optimal configuration strategy for multi-microgrid integrated energy system considering bargaining games[J]. Power system technology, 2020, 44(10): 3680-3688.
[5] LIU N, WANG J, WANG L.Distributed energy management for interconnected operation of combined heat and power-based microgrids with demand response[J]. Journal of modern power systems & clean energy, 2017, 5(3): 1-11.
[6] 何浩, 雷霞, 黄涛, 等. 价格引导下多微网系统协调自治优化运行策略[J]. 电力系统保护与控制, 2019, 47(16): 17-26.
HE H, LEI X, HUANG T, et a1. Coordinated and autonomous optimal operation strategy of multi-microgrid system under the guidance of price[J]. Power system protection and control, 2019, 47(16): 17-26.
[7] 龚钢军, 张心语, 张哲宁, 等. 基于区块链动态合作博弈的多微网共治交易模式[J]. 中国电机工程学报, 2021, 41(3): 803-819.
GONG G J, ZHANG X Y, ZHANG Z N, et al.Multi-microgrid Co-governance transaction model based on dynamic cooperation game of blockchain[J]. Proceedings of the CSEE, 2021, 41(3): 803-819.
[8] 朱永胜, 杨俊林, 刘洲峰, 等. 基于博弈论的风-光-车容量配置研究[J]. 太阳能学报, 2020, 41(9): 95-103.
ZHU Y S, YANG J L, LIU Z F, et al.Research on capacity allocation of wind-PV-EV based on game theory[J]. Acta energiae solaris sinica, 2020, 41(9): 95-103.
[9] 佟新, 胡存刚, 芮涛. 基于主从博弈的多微电网系统经济优化方法[J]. 中国电力, 2019,52(6): 68-76.
TONG X, HU C G, RUI T.Master-slave game based on economic optimization method of multi-microgrid system[J]. Electric power, 2019, 52(6): 68-76.
[10] 杨秋霞, 高辰, 刘同心, 等. 考虑柔性负荷的含光伏电力系统模糊随机优化调度风险研究[J]. 太阳能学报, 2020, 41(7): 142-151.
YANG Q X, GAO C, LIU T X, et al.Risk analysis on fuzzy random optimal dispatching of photovoltaic power consumption considering flexible load[J]. Acta energiae solaris sinica, 2020, 41(7): 142-151.
[11] 仲悟之, 黄思宇, 崔杨, 等. 考虑源荷不确定性的风电-光热-碳捕集虚拟电厂协调优化调度[J]. 电网技术, 2020, 44(9): 3424-3432.
ZHONG W Z, HUANG S Y, CUI Y, et al.W-S-C capture coordination in virtual power plant considering source-load uncertainty[J]. Power system technology, 2020, 44(9): 3424-3432.
[12] 王海洋, 李珂, 张承慧, 等. 基于主从博弈的社区综合能源系统分布式协同优化运行策略[J]. 中国电机工程学报, 2020, 40(17): 5435-5444.
WANG H Y, LI K, ZHANG C H, et al.Distributed coordinative optimal operation of community integrated energy system based on Stackelberg game[J]. Proceedings of the CSEE, 2020, 40(17): 5435-5444.
[13] 胡铭洋, 高红均, 王程, 等. 面向多微网协调交易的多方共治决策方法[J]. 电力系统自动化, 2022, 46(13): 30-42.
HU M U, GAO H J, WANG C, et al.Multi-party co-governance decision-making method for coordinated transactions among multiple microgrids[J]. Automation electric power systems,2022, 46(13): 30-42.
PDF(2287 KB)

Accesses

Citation

Detail

Sections
Recommended

/