APPLICATION OF EQUILIBRIUM ATMOSPHERIC BOUNDARY LAYER THEORY TO SIMULATION OF WIND FIELDS IN COMPLEX TERRAIN

Ma Guolin, Tian Linlin, Song Yilei, Zhao Ning

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 315-325.

PDF(11459 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(11459 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 315-325. DOI: 10.19912/j.0254-0096.tynxb.2022-1550

APPLICATION OF EQUILIBRIUM ATMOSPHERIC BOUNDARY LAYER THEORY TO SIMULATION OF WIND FIELDS IN COMPLEX TERRAIN

  • Ma Guolin, Tian Linlin, Song Yilei, Zhao Ning
Author information +
History +

Abstract

There is a decay phenomenon that the value of turbulent kinetic energy in the outlet is inconsistent with that given in the inlet when simulating the atmosphere boundary layer with the standard k-ε turbulence model. This paper uses different turbulent viscosity updating methods to research the sustainability of the equilibrium atmosphere boundary layer, then selects the better sustainable equilibrium atmosphere boundary layer methods combined with the solution of the BIA problem to simulate the wind flow over complex terrain, and finally based on the numerical simulation results, the effect of wind flow over complex terrain on wind turbine siting is analyzed. The results show that the wind profile at the outlet, the turbulent kinetic energy, and the dissipation rate can keep a high consistency with the given initial values at the inlet by selecting appropriate turbulent viscosity updating methods, roughness treatment methods, and the source terms of turbulent kinetic energy and dissipation rate. The introduction of the BIA problem-solving method can further improve the accuracy of numerical simulation of complex terrain. The wind turbines are preferably installed at the top of the mountain, avoiding the leeward area of the mountain with large turbulence, and the layout of wind turbines behind the mountain should be considered in combination with the wind turbine wake at the top of the mountain and the influence area of the mountain.

Key words

atmosphere boundary layer / k-ε turbulence model / complex terrain / numerical simulation / micro siting

Cite this article

Download Citations
Ma Guolin, Tian Linlin, Song Yilei, Zhao Ning. APPLICATION OF EQUILIBRIUM ATMOSPHERIC BOUNDARY LAYER THEORY TO SIMULATION OF WIND FIELDS IN COMPLEX TERRAIN[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 315-325 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1550

References

[1] RICHARDS P J, HOXEY R P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model[J]. Journal of wind engineering and industrial aerodynamics, 1993, 46/47: 145-153.
[2] RICHARDS P J, NORRIS S E.Appropriate boundary conditions for computational wind engineering models revisited[J]. Journal of wind engineering and industrial aerodynamics, 2011, 99(4): 257-266.
[3] POPE S B.Turbulent flows[M]. Cambridge: Cambridge University Press, 2000: 83-263.
[4] SPALART P R, RUMSEY C L.Effective inflow conditions for turbulence models in aerodynamic calculations[J]. AIAA journal, 2007, 45(10): 2544-2553.
[5] SARKAR D, SAVORY E.Numerical modeling of freestream turbulence decay using different commercial computational fluid dynamics codes[J]. Journal of fluids engineering, 2021, 143(4): 041503.
[6] YANG Y, GU M, CHEN S Q, et al.New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering[J]. Journal of wind engineering and industrial aerodynamics, 2009, 97(2): 88-95.
[7] PARENTE A, GORLÉ C, BEECK J, et al.A comprehensive modelling approach for the neutral atmospheric boundary layer: consistent inflow conditions, wall function and turbulence model[J]. Boundary-layer meteorology, 2011, 140(3): 411-428.
[8] BALOGH M, PARENTE A.Realistic boundary conditions for the simulation of atmospheric boundary layer flows using an improved k-ε model[J]. Journal of wind engineering and industrial aerodynamics, 2015, 144: 183-190.
[9] PARENTE A, GORLÉ C, VAN BEECK J, et al.Improved k-ε model and wall function formulation for the RANS simulation of ABL flows[J]. Journal of wind engineering and industrial aerodynamics, 2011, 99(4): 267-278.
[10] PONTIGGIA M, DERUDI M, BUSINI V, et al.Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes[J]. Journal of hazardous materials, 2009, 171(1/2/3): 739-747.
[11] BALOGH M, PARENTE A, BENOCCI C. RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: implementation and comparison for fluent and OpenFOAM[J]. Journal of wind engineering and industrial aerodynamics, 2012, 104/105/106: 360-368.
[12] YAN B W, LI Q S, HE Y C, et al.RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε model[J]. Environmental fluid mechanics, 2016, 16(1): 1-23.
[13] BLOCKEN B, STATHOPOULOS T, CARMELIET J.CFD simulation of the atmospheric boundary layer: wall function problems[J]. Atmospheric environment, 2007, 41(2): 238-252.
[14] HARGREAVES D M, WRIGHT N G.On the use of the k model in commercial CFD software to model the neutral atmospheric boundary layer[J]. Journal of wind engineering and industrial aerodynamics, 2007, 95(5): 355-369.
[15] LI C, WANG J H, HU G, et al.RANS simulation of horizontal homogeneous atmospheric boundary layer over rough terrains by an enriched canopy drag model[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104281.
[16] LONGO R, FERRAROTTI M, SÁNCHEZ C G, et al. Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings[J]. Journal of wind engineering and industrial aerodynamics, 2017, 167: 160-182.
[17] LONGO R, NICASTRO P, NATALINI M, et al.Impact of urban environment on Savonius wind turbine performance: a numerical perspective[J]. Renewable energy, 2020, 156: 407-422.
[18] 李林敏, 杨青, 潘航平. 动态风工况下复杂地形风电场流场多尺度仿真[J]. 太阳能学报, 2022, 43(11): 179-185.
LI L M, YANG Q, PAN H P.Multiscale flow simulation of complex terrain wind farm under unsteady wind[J]. Acta energiae solaris sinica, 2022, 43(11): 179-185.
[19] 叶昭良, 闫姝, 史绍平, 等. 基于Openfoam的怀来复杂地形风电场流动特性研究[J]. 可再生能源, 2020, 38(4): 471-476.
YE Z L, YAN S, SHI S P, et al.Research on Huailai complex wind farm terrain flow characteristics based on Openfoam[J]. Renewable energy resources, 2020, 38(4): 471-476.
[20] 左薇, 李惠民, 芮晓明, 等. 风电场典型复杂地形的数值模拟研究[J]. 太阳能学报, 2018, 39(11): 3202-3208.
ZUO W, LI H M, RUI X M, et al.Numerical simulation of typical complex terrain of wind farms[J]. Acta energiae solaris sinica, 2018, 39(11): 3202-3208.
[21] RADÜNZ W C, MATTUELLA J M L, PETRY A P. Wind resource mapping and energy estimation in complex terrain: a framework based on field observations and computational fluid dynamics[J]. Renewable energy, 2020, 152: 494-515.
[22] TEMEL O, BRICTEUX L, VAN BEECK J.Coupled WRF-OpenFOAM study of wind flow over complex terrain[J]. Journal of wind engineering and industrial aerodynamics, 2018, 174: 152-169.
[23] LAUNDER B E, SPALDING D B.Lectures in mathematical models of turbulence[M]. London, New York: Academic Press, 1972: 358-426.
[24] ANSYS. ANSYS fluent user's guide[M]. Canonsburg, PA: ANSYS Inc, 2019: 1355-1360.
[25] BERANEK W J.General rules for the determination of wind environment[C]//Proceedings of the 5th International Conference on Wind Engineering, Colorado, USA, 1979.
[26] BALOGH M.Numerical simulation of atmospheric flows using general purpose CFD solvers[D]. Budapest: Budapest University of Technology and Economics, 2015.
[27] TAYLOR P, TEUNISSEN H W. Askervein'82: report on the September/October1982 experiment to study boundary layer flow over Askervein, South Uist[R]. Technical Report MSRS-83-8, 1983.
[28] TAYLOR P, TEUNISSEN H W. The Askervein Hill Project: report on the September/October1983, main field experiment[R]. Technical Report MSRS-84-6, 1985.
[29] LIU L Q, RICHARD J A M. Effects of two-dimensional steep hills on the performance of wind turbines and wind farms[J]. Boundary layer meteorology, 2020, 176(2): 251-269.
[30] WU K L, PORTÉ-AGEL F.Flow adjustment inside and around large finite-size wind farms[J]. Energies, 2017, 10(12): 2164.
PDF(11459 KB)

Accesses

Citation

Detail

Sections
Recommended

/