STUDY ON TRANSITION JUDGMENT AND LAW OF SYMMETRICAL AIRFOILS UNDER LARGE REYNOLDS NUMBERS

Yang Congxin, Zhang Genhao, Li Shoutu, Guo Yanlei, Yue Nianxi, Liu Wenjie

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 326-333.

PDF(3697 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3697 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 326-333. DOI: 10.19912/j.0254-0096.tynxb.2022-1552

STUDY ON TRANSITION JUDGMENT AND LAW OF SYMMETRICAL AIRFOILS UNDER LARGE REYNOLDS NUMBERS

  • Yang Congxin1,2, Zhang Genhao1,2, Li Shoutu1,2, Guo Yanlei1, Yue Nianxi1,2, Liu Wenjie3
Author information +
History +

Abstract

In this paper, three symmetric airfoils with different thicknesses, NACA0012, NACA0015 and NACA0018, are used to study the transition problems of airfoils. The numerical simulation method based on the TSST turbulence model, the turbulence intensity-based turning judgment method and the study of the turning law of the airfoil surface flow under five large Reynolds number conditions are presented, and new reference ideas for wind turbine blade design are provided. The investigation shows that the transition judgment method based on turbulence intensity is practical and feasible. The effect of pre-transition flow disturbance can be effectively avoided by observing the transition using the step phenomenon of turbulence intensity profile on the airfoil surface. Moreover, the variation of turbulence intensity can be used to find the optimal design parameters for wind turbine blade design. It is found that the increase of the attack angle and Reynolds number cause the transition position of the upper airfoil surface to shift forward and the lower airfoil surface to move backward. In addition, the flow before the airfoil transition gradually stabilizes as the angle of attack decreases, the Reynolds number increases, and the airfoil surface thickness increases.

Key words

transition flow / wind turbines / computational fluid dynamic / γ-Reθ transition model / Reynolds number / turbulence intensity

Cite this article

Download Citations
Yang Congxin, Zhang Genhao, Li Shoutu, Guo Yanlei, Yue Nianxi, Liu Wenjie. STUDY ON TRANSITION JUDGMENT AND LAW OF SYMMETRICAL AIRFOILS UNDER LARGE REYNOLDS NUMBERS[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 326-333 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1552

References

[1] VAN ROOIJ R P JOM, TIMMER W A. Roughness sensitivity considerations for thick rotor blade airfoils[J]. Journal of solar energy engineering, 2003, 125(4): 468-478.
[2] MA R, ZHONG B W, LIU P Q.Optimization design study of low-Reynolds-number high-lift airfoils for the high-efficiency propeller of low-dynamic vehicles in stratosphere[J]. Science China technological sciences, 2010, 53(10): 2792-2807.
[3] DOU H S, Origin of turbulence[M]. Singapore: Springer, 2022: 3-12.
[4] HEISENBERG W.On stability and turbulence of fluid flows[J]. Technical report archive & image library, 1951, 379(15): 577-627.
[5] LIN C C.On the stability of two-dimensional parallel flows[J]. Proceedings of the national academy of sciences of the United States of America, 1944, 30(10): 316-324.
[6] 王刚, 刘毅, 王光秋, 等. 采用γ-Reθt模型的转捩流动计算分析[J]. 航空学报, 2014, 35(1): 70-79.
WANG G, LIU Y, WANG G Q, et al.Transitional flow simulation based on γ-Reθt transition model[J]. Acta aeronautica et astronautica sinica, 2014, 35(1): 70-79.
[7] 成江逸, 司马学昊, 吴杰. 粗糙元对零攻角尖锥模型高超声速边界层转捩的影响研究[J]. 南京航空航天大学学报, 2022, 54(4): 573-582.
CHENG J Y, SIMA X H, WU J.Influence of roughness element on hypersonic boundary layer transition of cone model at zero angle of attack[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(4): 573-582.
[8] NIEBLES ATENCIO B, CHERNORAY V, JAHANMIRI M.An experimental study on laminar-turbulent transition at high free-stream turbulence in boundary layers with pressure gradients[J]. EPJ web of conferences, 2012, 25: 01029.
[9] 孟德虹, 张玉伦, 王光学, 等. γ-Reθ转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801.
MENG D H, ZHANG Y L, WANG G X, et al.Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta aeronautica et astronautica sinica, 2011, 32(5): 792-801.
[10] 张瑞民, 时晓天. 转捩模型在翼型气动性能预测中的应用研究[J]. 航空工程进展, 2016, 7(4): 426-432.
ZHANG R M, SHI X T.Research on application of transition model in prediction of airfoil aerodynamic characteristics[J]. Advances in aeronautical science and engineering, 2016, 7(4): 426-432.
[11] 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4): 1092-1102.
ZHOU L, YAN C, HAO Z H, et al.Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta aeronautica et astronautica sinica, 2016, 37(4): 1092-1102.
[12] 王亮, 周玲. 基于改进的k-ω-γ转捩模式预测高超声速飞行器气动特性[J]. 空气动力学学报, 2021, 39(3): 51-61.
WANG L, ZHOU L.Prediction of aerodynamic characteristics of hypersonic vehicle by improved k-ω-γ transition model[J]. Acta aerodynamica sinica, 2021, 39(3): 51-61.
[13] WANG J Y.Development and application of a local correlation-based transition model in an unstructured grid CFD solver[D]. Toledo: the University of Toledo, 2014: 95-12.
[14] LANZAFAME R, MAURO S, MESSINA M.2D CFD modeling of H-darrieus wind turbines using a transition turbulence model[J]. Energy procedia, 2014, 45: 131-140.
[15] 陈立立, 郭正. 基于γ-Reθt转捩模型的低雷诺数翼型数值分析[J]. 航空学报, 2016, 37(4): 1114-1126.
CHEN L L, GUO Z.Numerical analysis for low Reynolds number airfoil based on γ-Reθt transition model[J]. Acta aeronautica et astronautica sinica, 2016, 37(4): 1114-1126.
[16] 艾梦琪, 段卓毅, 张健, 等. 高亚声速层流翼型转捩数值模拟及试验研究[J]. 飞行力学, 2020, 38(6): 77-81, 94.
AI M Q, DUAN Z Y, ZHANG J, et al.Numerical simulation and test on transition of a high subsonic laminar airfoil[J]. Flight dynamics, 2020, 38(6): 77-81, 94.
[17] 张旭耀, 杨从新, 李寿图. 基于γ-Reθ转捩模型的垂直轴风力机气动特性研究[J]. 华中科技大学学报(自然科学版), 2018, 46(2): 17-22.
ZHANG X Y, YANG C X, LI S T.Study on aerodynamic characteristics of vertical axis wind turbine based on γ-Reθt transition model[J]. Journal of Huazhong University of Science and Technology(nature science edition), 2018, 46(2): 17-22.
[18] RYAN N W, JOHNSON M M.Transistion from laminar to turbulent flow in pipes[J]. AIChE journal, 1959, 5(4): 433-435.
[19] LASAUSKAS E.Influence of transition location on airfoil drag[J]. Aviation, 2005, 9(3): 19-22.
[20] WANG M, MOREAU S, IACCARINO G, et al.LES prediction of wall-pressure fluctuations and noise of a low-speed airfoil[J]. International journal of aeroacoustics, 2009, 8(3): 177-197.
[21] 王新军, 罗纪生, 周恒. 平面槽道流中层流-湍流转捩的“breakdown” 过程的内在机理[J]. 中国科学G辑: 物理学力学天文学, 2005, 35(1): 71-78.
WANG X J, LUO J S, ZHOU H.Internal mechanism of “breakdown” process of laminar-turbulent transition in plane channel flow[J]. Science in China: physics, mechanics & astronomy series G, 2005, 35(1): 71-78.
[22] 梁撑刚, 张琳, 刘华伟. 翼型动态实验中脉动压力信号处理方法研究[J]. 弹箭与制导学报, 2021, 41(2): 111-113, 119.
LIANG C G, ZHANG L, LIU H W.Research on fluctuating pressure signal processing in airfoil dynamic experiment[J]. Journal of projectiles, rockets, missiles and guidance, 2021, 41(2): 111-113, 119.
[23] 王科雷, 周洲, 郭佳豪, 等. 飞翼布局太阳能无人机低雷诺数反弯翼型设计[J]. 西北工业大学学报, 2022, 40(3): 512-523.
WANG K L, ZHOU Z, GUO J H, et al.Study on design of low Reynolds number reflexed airfoil for solar-powered UAV in flying wing configuration[J]. Journal of Northwestern Polytechnical University, 2022, 40(3): 512-523.
[24] 雷娟棉, 郭牧天, 赵小见, 等. 机翼表面脉动压力的空间和频域特性数值研究[J]. 北京理工大学学报, 2022, 42(8): 834-841.
LEI J M, GUO M T, ZHAO X J, et al.Numerical study of pressure fluctuation spatial and frequency domain characteristics on airfoil surface[J]. Transactions of Beijing Institute of Technology, 2022, 42(8): 834-841.
[25] STANDISH K J, VAN DAM C P. Aerodynamic analysis of blunt trailing edge airfoils[J]. Journal of solar energy engineering, 2003, 125(4): 479-487.
[26] 张磊, 杨科, 赵晓路, 等. 不同尾缘改型方式对风力机钝尾缘翼型气动性能的影响[J]. 工程热物理学报, 2009, 30(5): 773-776.
ZHANG L, YANG K, ZHAO X L, et al.Aerodynamic influence of different trailing-edge changing methods to the blunt brailing-edge airfoil[J]. Journal of engineering thermophysics, 2009, 30(5): 773-776.
[27] 杨从新, 张志梅, 王强, 等. 风剪切下塔影效应对水平轴风力机叶片及风轮气动载荷的影响[J]. 太阳能学报, 2022, 43(8): 253-259.
YANG C X, ZHANG Z M, WANG Q, et al.Influence of tower shadow effect on aerodynamic load of blade and rotor of horizontal axis wind turbines under wind shear[J]. Acta energiae solaris sinica, 2022, 43(8): 253-259.
[28] 张旭耀, 杨从新, 李寿图, 等. 风剪切来流下风力机流场特性与风轮气动载荷研究[J]. 太阳能学报, 2019, 40(11): 3281-3288.
ZHANG X Y, YANG C X, LI S T, et al.Study on flow field characteristics and aerodynamic loads of horizontal axis wind turbine in shear inflow[J]. Acta energiae solaris sinica, 2019, 40(11): 3281-3288.
[29] JACKSON K J, ZUTECK M DAM, VAN DAM C P, et al. Innovative design approaches for large wind turbine blades[J]. Wind energy, 2005, 8(2): 141-171.
[30] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables—part I: model formulation[J]. Journal of turbomachinery, 2006, 128(3): 413-422.
PDF(3697 KB)

Accesses

Citation

Detail

Sections
Recommended

/