STUDY ON BROADBAND OSCILLATION CHARACTERISTICS CONSIDERING INTERACTION BETWEEN NEW ENERGY STATIONS

Ma Yanfeng, Chen Xin, Liu Xinyuan, Zhao Shuqiang, Jiang Weijian

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 563-573.

PDF(8639 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(8639 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 563-573. DOI: 10.19912/j.0254-0096.tynxb.2022-1568

STUDY ON BROADBAND OSCILLATION CHARACTERISTICS CONSIDERING INTERACTION BETWEEN NEW ENERGY STATIONS

  • Ma Yanfeng1, Chen Xin1,2, Liu Xinyuan1,3, Zhao Shuqiang1, Jiang Weijian4
Author information +
History +

Abstract

Compared with the single-source grid-connected system, the broadband oscillation analysis of the multi-source grid-connected system, represented by the wind-PV system, becomes more complicated due to the interaction between the stations. In this paper, a small signal model of the system is established by using the graphical modeling method and verified by simulation. Then, the broadband oscillation mode is analyzed by the eigenvalue analysis method to find out the interaction mode of wind farm and photovoltaic power station. Impedance method is used to study the interaction between renewable energy stations and analyze the influencing factors. The research results show that the interaction between renewable energy stations depends on the relative size and phase of the equivalent admittance of the stations, and the grid-connected distance and output ratio of renewable energy stations will affect the interaction between the stations and thus affect the system interaction mode. The analysis of the interaction rule of different positions and operating conditions of renewable energy can provide certain guidance for the access and operation of large-scale renewable energy.

Key words

wind farms / photovoltaic power system / power system stability / broadband oscillation / interaction between stations

Cite this article

Download Citations
Ma Yanfeng, Chen Xin, Liu Xinyuan, Zhao Shuqiang, Jiang Weijian. STUDY ON BROADBAND OSCILLATION CHARACTERISTICS CONSIDERING INTERACTION BETWEEN NEW ENERGY STATIONS[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 563-573 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1568

References

[1] 李承周, 王宁玲, 窦潇潇, 等. 多能源互补分布式能源系统集成研究综述及展望[J]. 中国电机工程学报, 2023, 43(18):7127-7149.
LI C Z, WANG N L, DOU X X, et al.Review and prospect of multi-energy complementary distributed energy system integration[J]. Proceedings of the CSEE, 2023, 43(18):7127-7149.
[2] 陈露洁, 徐式蕴, 孙华东, 等. 高比例电力电子电力系统宽频带振荡研究综述[J]. 中国电机工程学报, 2021, 41(7): 2297-2310.
CHEN L J, XU S Y, SUN H D, et al.A survey on wide-frequency oscillation for power systems with high penetration of power electronics[J]. Proceedings of the CSEE, 2021, 41(7): 2297-2310.
[3] 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47-59.
XIAO X Y, ZHENG Z X.New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: contribution, key techniques, and challenges[J]. Advanced engineering sciences, 2022, 54(1): 47-59.
[4] 姜红丽, 刘羽茜, 冯一铭, 等. 碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J]. 发电技术, 2022, 43(1): 54-64.
JIANG H L, LIU Y Q, FENG Y M, et al.Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J]. Power generation technology, 2022, 43(1): 54-64.
[5] 宋斯珩, 赵书强, 邵冰冰, 等. 双馈风电场经柔直并网系统交互作用分析[J]. 太阳能学报, 2021, 42(4): 409-416.
SONG S H, ZHAO S Q, SHAO B B, et al.Interaction analysis of DFIG-based wind farm integrated to grid through VSC-HVDC system[J]. Acta energiae solaris sinica, 2021, 42(4): 409-416.
[6] 刘毅. 直驱风电场与LCC-HVDC交互作用机理及次同步振荡特性研究[D]. 北京: 华北电力大学, 2021.
LIU Y.Research on interaction mechanism and sub-synchronous oscillation characteristics between D-PMSG wind farm and LCC-HVDC[D]. Beijing: North China Electric Power University,2021.
[7] 高本锋, 刘毅, 李蕴红, 等. 直驱风电场与LCC-HVDC次同步交互作用的扰动传递路径及阻尼特性分析[J]. 中国电机工程学报, 2021, 41(5): 1713-1729.
GAO B F, LIU Y, LI Y H, et al.Analysis on disturbance transfer path and damping characteristics of subsynchronous interaction between D-PMSG-based wind farm and LCC-HVDC[J]. Proceedings of the CSEE, 2021, 41(5): 1713-1729.
[8] 高本锋, 刘毅, 宋瑞华, 等. 双馈风电场经LCC-HVDC送出的次同步振荡特性研究[J]. 中国电机工程学报, 2020, 40(11): 3477-3489.
GAO B F, LIU Y, SONG R H, et al.Study on subsynchronous oscillation characteristics of DFIG-based wind farm integrated with LCC-HVDC system[J]. Proceedings of the CSEE, 2020, 40(11): 3477-3489.
[9] 高本锋, 陈淑平, 沈琳, 等. 光伏经LCC-HVDC外送系统的次同步振荡特性分析[J]. 华北电力大学学报(自然科学版), 2022, 49(2): 41-52.
GAO B F, Chen S P, SHEN L, et al.Analysis of subsynchronous oscillation characteristics of photovoltaic power station integrated with LCC-HVDC system[J]. Journal of North China Electric Power University (natural science edition), 2022, 49(2): 41-52.
[10] 尹睿, 孙媛媛, 王姗姗, 等. 直驱风机经柔直送出系统多控制环节间交互机理研究[J]. 中国电机工程学报, 2022, 42(10): 3627-3642.
YIN R, SUN Y Y, WANG S S, et al.The interaction mechanism analysis among the different control loops of the direct-drive wind turbine connected VSC-HVDC systems[J]. Proceedings of the CSEE, 2022, 42(10): 3627-3642.
[11] 胡文波, 贾祺, 刘侃, 等. 面向次同步振荡分析的直驱风电机群建模[J]. 太阳能学报, 2022, 43(2): 424-435.
HU W B, JIA Q, LIU K, et al.Modeling of direct drive PMSG facing subsynchronous oscillation analysis[J]. Acta energiae solaris sinica, 2022, 43(2): 424-435.
[12] 桑顺, 张琛, 蔡旭, 等. 计及内、外部交互模态的电压源型风电场-电网稳定性量化分析[J]. 高电压技术, 2022, 48(7): 2840-2853.
SANG S, ZHANG C, CAI X, et al.Quantitative analysis of the voltage-source-type wind farm-weak grid's stability considering the internal and external interaction modes[J]. High voltage engineering, 2022, 48(7): 2840-2853.
[13] 周佩朋, 李光范, 宋瑞华, 等. 直驱风机与静止无功发生器的次同步振荡特性及交互作用分析[J]. 中国电机工程学报, 2018, 38(15): 4369-4378, 4637.
ZHOU P P, LI G F, SONG R H, et al.Subsynchronous oscillation characteristics and interactions of direct drive permanent magnet synchronous generator and static var generator[J]. Proceedings of the CSEE, 2018, 38(15): 4369-4378, 4637.
[14] 迟永宁, 田新首, 汤海雁, 等. 双馈风电机组与静止无功发生器交互作用原理及系统振荡特性研究[J]. 电网技术, 2017, 41(2): 486-492.
CHI Y N, TIAN X S, TANG H Y, et al.Interactions between DFIGs and SVG and oscillation characteristics of power grid connected wind turbines[J]. Power system technology, 2017, 41(2): 486-492.
[15] 陈晨, 杜文娟, 王灵安, 等. 双馈风电场内部多模式谐振引发电力系统次同步振荡的机理研究[J]. 中国电机工程学报, 2019, 39(3): 642-651, 944.
CHEN C, DU W J, WANG L A, et al.Mechanism of power system sub-synchronous oscillation induced by internal multi-mode resonance in doubly-fed wind farm[J]. Proceedings of the CSEE, 2019, 39(3): 642-651, 944.
[16] ADERIBOLE A, ZEINELDIN H H, HOSANI M A.A critical assessment of oscillatory modes in multi-microgrids comprising of synchronous and inverter-based distributed generation[J]. IEEE transactions on smart grid, 2019, 10(3): 3320-3330.
[17] ZHAO Z L, YANG P, WANG Y W, et al.Dynamic characteristics analysis and stabilization of PV-based multiple microgrid clusters[J]. IEEE transactions on smart grid, 2019, 10(1): 805-818.
[18] 甄自竞, 杜文娟, 苏田宇, 等. 风-光伏混合电场并网对电力系统次同步振荡的影响[J]. 南方电网技术, 2019, 13(3): 64-72.
ZHEN Z J, DU W J, SU T Y, et al.Influence of wind-photovoltaic hybrid farm's intergration on the sub-synchronous oscillation of power system[J]. Southern power system technology, 2019, 13(3): 64-72.
[19] 胡文波, 贾祺, 刘侃, 等. 低运行工况下直驱风电场电流内环主导的次同步振荡特性研究[J]. 太阳能学报, 2022, 43(4): 341-350.
HU W B, JIA Q, LIU K, et al.Sub-synchronous oscillation of direct drive PMSG based wind farm under low operating conditions connected to weak grid[J]. Acta energiae solaris sinica, 2022, 43(4): 341-350.
[20] 陈继明, 王辉, 仉志华. 双馈风电场等值准确度研究[J]. 电网技术, 2014, 38(7): 1867-1872.
CHEN J M, WANG H, ZHANG Z H.Research on equivalent accuracy of wind farm composed of DFIGs[J]. Power system technology, 2014, 38(7): 1867-1872.
[21] 王旭阳. 大规模光伏电站建模及外特性研究[D]. 北京: 北京交通大学, 2012.
WANG X Y.Modeling of large scale photovoltaic power station and research on its external characteristics[D]. Beijing: Beijing Jiaotong University, 2012.
[22] 张思彤, 梁纪峰, 马燕峰, 等. 直驱风电场经柔性直流输电并网的宽频振荡特性分析[J]. 电力系统保护与控制, 2022, 50(14): 33-42.
ZHANG S T, LIANG J F, MA Y F, et al.Analysis of broadband oscillation characteristics of direct drive wind farm connected by flexible DC power transmission[J]. Protection and control of power systems, 2022, 50(14): 33-42.
PDF(8639 KB)

Accesses

Citation

Detail

Sections
Recommended

/