STUDY ON LIGHTNING TRANSIENT RESPONSES OF GRAVITY FOUNDATION OFFSHORE WIND TURBINE

Zhang Ping, Zhang Haixu, Zhang Guofeng, Yin Junjie, Chen Cheng, Li Lianbing

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 285-290.

PDF(2085 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2085 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (7) : 285-290. DOI: 10.19912/j.0254-0096.tynxb.2022-1577

STUDY ON LIGHTNING TRANSIENT RESPONSES OF GRAVITY FOUNDATION OFFSHORE WIND TURBINE

  • Zhang Ping1, Zhang Haixu2, Zhang Guofeng3, Yin Junjie3, Chen Cheng3, Li Lianbing1
Author information +
History +

Abstract

To provide a theoretical basis for the lightning protection of gravity basic offshore wind turbines, an integrated electromagnetic transient model is constructed. Based on the electromagnetic transient software ATP-EMTP, the lightning transient response is studied, and the influence of key factors such as blade length, tower height and blade rotation angle are analyzed. The simulation results show that the transient voltage of MV level is caused by lightning strike, and it exhibits underdamped oscillation attenuation, and the response voltage of kV level still exists at the gravity foundation. Both blade length and wind turbine tower height are positively correlated with lightning transient response amplitude. The transient voltage in the cabin is highest when the angle between the lightning-struck blade and the horizontal plane is 90°.

Key words

offshore wind turbines / lightning / transient response / gravity foundation / integrated model

Cite this article

Download Citations
Zhang Ping, Zhang Haixu, Zhang Guofeng, Yin Junjie, Chen Cheng, Li Lianbing. STUDY ON LIGHTNING TRANSIENT RESPONSES OF GRAVITY FOUNDATION OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 285-290 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1577

References

[1] CWEC. Global wind report 2023[R]. 2023
[2] 蔡国伟, 雷宇航, 葛维春, 等. 高寒地区风电机组雷电防护研究综述[J]. 电工技术学报, 2019, 34(22): 4804-4815.
CAI G W, LEI Y H, GE W C, et al.Review of research on lightning protection for wind turbines in alpine areas[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4804-4815.
[3] 施广全, 张义军, 陈绍东, 等. 风力发电机组防雷技术进展综述[J]. 电网技术, 2019, 43(7): 2477-2487.
SHI G Q, ZHANG Y J, CHEN S D, et al.Review of lightning protection technique progress of wind turbines[J]. Power system technology, 2019, 43(7): 2477-2487.
[4] SHULZHENKO E, YAMAMOTO K, ROCK M.Modeling Lightning Current Distribution in Tower Base of Wind Turbine[C]//2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Colombo, Sri Lanka, 2021: 1-8.
[5] SHULZHENKO E, KRAPP M, ROCK M, et al.Investigation of lightning parameters occurring on offshore wind farms[C]//2017 International Symposium on Lightning Protection (XIV SIPDA), Natal, Brazil, 2017: 169-175.
[6] 陈维江, 何天宇, 边凯, 等. 风机叶片雷击损伤及防护研究进展综述[J]. 高电压技术, 2019, 45(9): 2782-2796.
CHEN W J, HE T Y, BIAN K, et al.Review of research progress in lightning damage and protection of wind turbine blades[J]. High voltage engineering, 2019, 45(9): 2782-2796.
[7] MALCOLMN N, AGGARWAL K.Estimation of the failure rate of wind turbine electrical systems exposed to lightning strikes[C]//IEEE Power & Energy Society General Meeting, Denver, USA: IEEE, 2015: 1-6.
[8] PAOLONE M, NAPOLITANO F, BORGHETTI A, et al.Models of Wind-Turbine Main Shaft Bearings for the Development of Specific Lightning Protection Systems[C]//2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 2007: 783-789.
[9] YANG B, LIU R, CHEN X.Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD[J]. IEEE transactions on industrial informatics, 2017, 13(3): 1321-1331.
[10] 王国政, 张黎, 吴昊, 等. 海上风机一体化电磁暂态模型与雷电暂态过电压研究[J]. 电力自动化设备, 2017, 37(11): 32-38.
WANG G Z, ZHANG L, WU H, et al.Electromagnetic transient integration model and transient overvoltage study of offshore wind turbine[J]. Electric power automation equipment, 2017, 37(11): 32-38.
[11] GUTIERREZ J, MORENO P, NAREDO L, et al.Nonuniform transmission tower model for lightning transient studies[J]. IEEE transactions on power delivery, 2004, 19(2): 490-496.
[12] 陶世祺, 张小青, 王耀武, 等. 直接雷击时风电机组的暂态响应分析[J]. 太阳能学报, 2017, 38(10): 2675-2682.
TAO S Q, ZHANG X Q, WANG Y W, et al.Analysis of transient responses on wind turbines during direct lightning strike[J]. Acta energiae solaris sinica, 2017, 38(10): 2675-2682.
[13] MATHERN A, HAAR C, MARX S.Concrete support structures for offshore wind turbines: current status, challenges and future trends[J]. Energies, 2021, 14: 1995.
[14] ALBERTO D, RAFAEL A.Single port equivalent circuit representation of grounding systems based on impedance fitting[J]. IEEE transactions on electromagnetic compatibility, 2019, 61(5): 1683-1685.
[15] 陶世祺. 海上风力发电机组雷电瞬态研究[D]. 北京: 北京交通大学, 2019.
TAO S Q.Study on lightning transient of offshore wind turbines[D]. Beijing: Beijing Jiaotong University, 2019.
PDF(2085 KB)

Accesses

Citation

Detail

Sections
Recommended

/