EXPERIMENTAL STUDY ON POWER GENERATION CONTROL STRATEGY OF HYDRAULIC WAVE ENERGY CONVERTER

Li Qiang, Guo Yi, Wang Xiangnan, Jia Ning

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 410-414.

PDF(1858 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1858 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 410-414. DOI: 10.19912/j.0254-0096.tynxb.2022-1580

EXPERIMENTAL STUDY ON POWER GENERATION CONTROL STRATEGY OF HYDRAULIC WAVE ENERGY CONVERTER

  • Li Qiang, Guo Yi, Wang Xiangnan, Jia Ning
Author information +
History +

Abstract

Taking the hydraulic system of a wave energy converter (WEC) with several generators as the research object,the composition and working principle of the hydraulic system are introduced, and the experimental study on two power generation control strategies are carried out through the self-made hydraulic test platform. The power generation control strategy of changing the opening of flow control valve is first tested. The results show that using this control strategy can stabilize the output voltage for a period of time and improve the power generation quality. Two methods based on hydraulic test platform to obtain the effective input electrical signal of the proportional flow control valve are also proposed. Secondly,the gradient power generation control strategy is realized by connecting generator sets to the output end of the hydraulic system. The data results confirm that the gradient power generation control strategy can effectively improve the instantaneous output power and enhance the adaptability of the WEC under different wave conditions. The conditions for realizing this control strategy in actual sea conditions are discussed preliminary.

Key words

ocean energy / wave energy / hydraulic system / control strategy

Cite this article

Download Citations
Li Qiang, Guo Yi, Wang Xiangnan, Jia Ning. EXPERIMENTAL STUDY ON POWER GENERATION CONTROL STRATEGY OF HYDRAULIC WAVE ENERGY CONVERTER[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 410-414 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1580

References

[1] YOU Y G, ZHENG Y H, SHEN Y M, et al.Wave energy study in China: advancements and perspectives[J]. China ocean engineering, 2003, 17(1): 99-107.
[2] 李强, 何宏舟, 刘森明, 等. 浮子式波浪能转换装置研究概述[J]. 海洋开发与管理, 2016, 33(3): 64-68.
LI Q, HE H Z, LIU S M, et al.On the float type wave energy converters[J]. Ocean development and management, 2016, 33(3): 64-68.
[3] 王锰, 李蒙, 夏增艳, 等. 浮力摆式波浪能发电装置模型试验[J]. 海洋技术, 2013, 32(1): 79-82.
WANG M, LI M, XIA Z Y, et al.Model test of buoyant pendulum wave-power generation device[J]. Ocean technology, 2013, 32(1): 79-82.
[4] 盛松伟. 漂浮鸭式波浪能发电装置研究[D]. 北京: 中国科学院大学, 2011.
SHENG S W.Study on floating duck wave power generation device[D]. Beijing: University of Chinese Academy of Sciences, 2011.
[5] 盛松伟, 王坤林, 吝红军, 等. 100 kW鹰式波浪能发电装置“万山号”实海况试验[J]. 太阳能学报, 2019, 40(3): 709-714.
SHENG S W, WANG K L, LIN H J, et al.Open sea tests of 100 kW wave energy convertor sharp eagle Wanshan[J]. Acta energiae solaris sinica, 2019, 40(3): 709-714.
[6] 叶寅, 游亚戈, 王振鹏, 等. 波浪能装置液压自动分级控制系统研究[J]. 太阳能学报, 2019, 40(6): 1481-1486.
YE Y, YOU Y G, WANG Z P, et al.Automatic classification control system of wave energy device research[J]. Acta energiae solaris sinica, 2019, 40(6): 1481-1486.
[7] 王坤林, 田联房, 王孝洪, 等. 液压蓄能式波浪能装置发电系统的特性[J]. 华南理工大学学报(自然科学版), 2014, 42(6): 25-31.
WANG K L, TIAN L F, WANG X H, et al.Characteristics of power generation system with hydraulic energy-storage wave energy converter[J]. Journal of South China University of Technology (natural science edition), 2014, 42(6): 25-31.
[8] 张家明, 黎明, 张帅, 等. 100 kW组合型振荡浮子式波浪发电装置能量转换系统研究[J]. 太阳能学报, 2017, 38(12): 3355-3362.
ZHANG J M, LI M, ZHANG S, et al.Energy conversion system research of 100 kW combined oscillating float wave power plant[J]. Acta energiae solaris sinica, 2017, 38(12): 3355-3362.
PDF(1858 KB)

Accesses

Citation

Detail

Sections
Recommended

/