CRACKING BEHAVIOR AND MECHANISM OF BIOMASS GASIFICATION TAR WITH ZSM-5/Ni FOAM COMPOSITE CATALYST

Liu Weibo, Xu Dan, Wang Jiaxing, Zhang Shuping, Xiong Yuanquan

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 351-357.

PDF(2761 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2761 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (1) : 351-357. DOI: 10.19912/j.0254-0096.tynxb.2022-1584

CRACKING BEHAVIOR AND MECHANISM OF BIOMASS GASIFICATION TAR WITH ZSM-5/Ni FOAM COMPOSITE CATALYST

  • Liu Weibo1, Xu Dan1, Wang Jiaxing1, Zhang Shuping1,2, Xiong Yuanquan1
Author information +
History +

Abstract

To deal with the problem of tar production during biomass gasification, the ZSM-5/Ni Foam is used to explore its catalytic performance,which is prepared by impregnation method with Ni Foam as nickel source and carrier and ZSM-5 as active additive. The catalytic cracking of biomass tar is carried out in a segmented fixed-bed reaction system. The results show that when the acidic ZSM-5 is supported on the ideal three-dimensional framework structure of Ni Foam, the ZSM-5/Ni Foam not only increases the contact area between biomass tar and catalyst active sites,but also slows down the formation of carbon deposition during the catalytic process, thereby obtaining higher catalytic performance with the tar conversion rate reaching 90.2%. The ZSM-5/Ni Foam catalyst possesses good catalytic activity and cycle stability. At the same time,this paper also reveals the catalytic mechanism of ZSM-5/Ni Foam.

Key words

biomass / gasification / tar / composite catalyst / catalytic cracking

Cite this article

Download Citations
Liu Weibo, Xu Dan, Wang Jiaxing, Zhang Shuping, Xiong Yuanquan. CRACKING BEHAVIOR AND MECHANISM OF BIOMASS GASIFICATION TAR WITH ZSM-5/Ni FOAM COMPOSITE CATALYST[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 351-357 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1584

References

[1] 刘亚, 黄胜, 吴诗勇, 等. 生物质燃气中焦油净化的试验研究[J]. 太阳能学报, 2020, 41(1): 161-165.
LIU Y, HUANG S, WU S Y, et al.Experimental study on purification of tar from biomass gas producer[J]. Acta energiae solaris sinica, 2020, 41(1): 161-165.
[2] 王嵩. 整装金属纤维/泡沫结构化Pd、Ni基催化剂及其乙炔选择性加氢催化性能研究[D]. 上海: 华东师范大学, 2020.
WANG S.Monolithic metal fiber-/ foam-structured Pd-/ Ni-based catalysts for selective hydrogenation of acetylene to ethylene[D]. Shanghai: East China Normal University, 2020.
[3] 季祥, 刘彬, 李湘萍, 等. 金属改性ZSM-5催化剂对黄丝藻提油后藻渣催化热解的影响[J]. 太阳能学报, 2017, 38(11): 3104-3110.
JI X, LIU B, LI X P, et al.Catalytic pyrolysis of lipid-extracted residue of tribonema minus using metal-modified ZSM-5 catalysts[J]. Acta energiae solaris sinica, 2017, 38(11): 3104-3110.
[4] ZHOU Y C, CHEN Z Z, GONG H J, et al.Study on the feasibility of using monolithic catalyst in the in situ catalytic biomass pyrolysis for syngas production[J]. Waste management, 2021, 120: 10-15.
[5] CHEN G Y, LI J, LIU C, et al.Low-temperature catalytic cracking of biomass gasification tar over Ni/HZSM-5[J]. Waste and biomass valorization, 2019, 10(4): 1013-1020.
[6] 刘京雷, 王浩, 张胜中, 等. 泡沫镍负载5A分子筛结构化吸附材料的制备及性能[J]. 环境工程学报, 2020, 14(1): 165-172.
LIU J L, WANG H, ZHANG S Z, et al.Preparation and properties of structured adsorbent materials with foam nickel loaded with 5A molecular sieve[J]. Chinese journal of environmental engineering, 2020, 14(1): 165-172.
[7] XIE Y H, SU Y H, WANG P, et al.In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers- supported Fe-Ni bimetallic catalysts[J]. Fuel processing technology, 2018, 182: 77-87.
[8] ZHANG S P, SU Y H, XIONG Y Q, et al.Physicochemical structure and reactivity of char from torrefied rice husk: effects of inorganic species and torrefaction temperature[J]. Fuel, 2020, 262: 116667.
[9] ZOU X H, MA Z Y, LIU H B, et al.Green synthesis of Ni supported hematite catalysts for syngas production from catalytic cracking of toluene as a model compound of biomass tar[J]. Fuel, 2018, 217: 343-351.
[10] HU M A, LAGHARI M, CUI B H, et al.Catalytic cracking of biomass tar over char supported nickel catalyst[J]. Energy, 2018, 145: 228-237.
[11] WANG J X, ZHANG S P, XU D, et al.Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking[J]. Fuel, 2022, 323: 124278.
[12] BARTIK A, FUCHS J, PACHOLIK G, et al.Experimental investigation on the methanation of hydrogen-rich syngas in a bubbling fluidized bed reactor utilizing an optimized catalyst[J]. Fuel processing technology, 2022, 237: 107402.
[13] 董晓娟, 金伟伟, 刘晨江. 过渡金属催化去官能团化反应研究进展[J]. 有机化学, 2020, 40(7): 1860-1873.
DONG X J, JIN W W, LIU C J.Recent advances in transition-metal catalyzed defunctionalization reaction[J]. Chinese journal of organic chemistry, 2020, 40(7): 1860-1873.
[14] 马帅, 胡笑颖, 董长青, 等. 生物质焦油模型化合物脱除研究进展[J]. 林产化学与工业, 2019, 39(4): 1-8.
MA S, HU X Y, DONG C Q, et al.Research progress in the removal of biomass tar model compounds[J]. Chemistry and industry of forest products, 2019, 39(4): 1-8.
[15] ZHANG Z K, LIU L N, SHEN B X, et al.Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification[J]. Renewable and sustainable energy reviews, 2018, 94: 1086-1109.
[16] 张妮妮, 缪平, 邢爱华, 等. ZSM-5分子筛铝分布的研究方法[J]. 石油化工, 2017, 46(12): 1452-1460.
ZHANG N N, MIAO P, XING A H, et al.The study method on Al distribution of ZSM-5 zeolites[J]. Petrochemical technology, 2017, 46(12): 1452-1460.
[17] XIA S, YANG H P, LU W, et al.Fe-Co based synergistic catalytic graphitization of biomass: influence of the catalyst type and the pyrolytic temperature[J]. Energy, 2022, 239: 122262.
[18] 李孝馀. 中间相沥青基炭纤维轻度氧化的研究[D]. 长沙: 湖南大学, 2016.
LI X Y.Research on the mild oxidation of mesophase pitch-based carbon fiber[D]. Changsha: Hunan University, 2016.
[19] GAO N B, SALISU J, QUAN C, et al.Modified nickel-based catalysts for improved steam reforming of biomass tar: a critical review[J]. Renewable and sustainable energy reviews, 2021, 145: 111023.
PDF(2761 KB)

Accesses

Citation

Detail

Sections
Recommended

/