EFFECT OF BLADE SHAPE ON WAVE POWER GENERATION EFFICIENCY OF RADIAL TURBINE

Wu Rukang, Wu Bijun, Li Meng, Xue Muwen, Chen Yi, Zhang Yanqin

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (2) : 218-224.

PDF(2608 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2608 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (2) : 218-224. DOI: 10.19912/j.0254-0096.tynxb.2022-1630

EFFECT OF BLADE SHAPE ON WAVE POWER GENERATION EFFICIENCY OF RADIAL TURBINE

  • Wu Rukang1, Wu Bijun2, Li Meng3, Xue Muwen1, Chen Yi1, Zhang Yanqin3
Author information +
History +

Abstract

Based on the experimental data of a small backward bend duct buoy(BBDB), 4 radial turbines are designed to study the influence of blade shape on the energy conversion efficiency of radial turbines used for wave power generation. The performance parameters of the 4 turbines in steady flow are obtained by numerical analysis. Results show that performance of the 4 turbines is similar. Based on the numerical analysis results in steady flow, performance of the 4 turbines in unsteady flow are analyzed by using the quasi-steady analysis method. Results show that efficiency of the 4 turbines in the unsteady flow is different due to the reverse flow. Therefore, to design the air turbine used in BBDB should consider not only the efficiency but also the torque generated by reverse flow.

Key words

wave power / conversion efficiency / turbines / backward bend duct buoy / reverse flow

Cite this article

Download Citations
Wu Rukang, Wu Bijun, Li Meng, Xue Muwen, Chen Yi, Zhang Yanqin. EFFECT OF BLADE SHAPE ON WAVE POWER GENERATION EFFICIENCY OF RADIAL TURBINE[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 218-224 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1630

References

[1] WELLS A A.Fluid driven rotary transducer: British, 1595700[P]. 1976. 1.
[2] SETOGUCHI T, SANTHAKUMAR S, TAKAO M, et al.A modified Wells turbine for wave energy conversion[J]. Renewable energy, 2003, 28(1): 79-91.
[3] STARZMANN R, CAROLUS T H, TEASE K, et al.Effect of design parmeters on aero-acoustic and aerodynamic performance of wells turbines[C]//Proceedings of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, the Netherlands, 2011: 299-308.
[4] 梁贤光, 杨光宇, 吴海明, 等. BD102G型航标用波力发电装置研制[J]. 可再生能源, 2014, 32(12): 1933-1938.
LIANG X G, YANG G Y, WU H M, et al.Research on the BD102G type wave energy generation device for navigational buoy[J]. Renewable energy resources, 2014, 32(12): 1933-1938.
[5] 余志. 对称翼透平在规则与不规则振荡气流中的自起动过程模拟[J]. 水动力学研究与进展(A辑), 1991, 6(2): 24-29.
YU Z.Simulation of self-starting process of the Wells turbine in regular and irregular oscillating air flow[J]. Journal of hydrodynamics, 1991, 6(2): 24-29.
[6] 刘臻. 岸式振荡水柱波能发电装置的试验及数值模拟研究[D]. 青岛: 中国海洋大学, 2008.
LIU Z.Experimental and numerical simulation study on shore-based of oscillating water column wave energy power generation device[D]. Qingdao: Ocean University of China, 2008.
[7] ANDREEVICH B I. Apparatus for converting sea wave energy into electrical energy: US3922739[P].1975-12-02.
[8] KIM T W, KANEKO K, SETOGUCHI T, et al.Aerodynamic performance of an impulse turbine with self-pitch-controlled guide vanes for wave power generator[J]. KSME/JSME Thermal and Fluid Engineering Conference, 1988: 133-137.
[9] 梁贤光, 孙培亚, 王伟, 等. 往复流中双向导叶冲动透平模型性能试验研究[J]. 海洋工程, 2001, 19(4): 84-93.
LIANG X G, SUN P Y, WANG W, et al.Experiment study of 2-direction guide-vane turbine in to-and-fro air-flow[J]. The ocean engineering, 2001, 19(4): 84-93.
[10] LIU Z, CUI Y, XU C L, et al.Experimental and numerical studies on an OWC axial-flow impulse turbine in reciprocating air flows[J]. Renewable and sustainable energy reviews, 2019, 113: 109272.
[11] JAYASHANKAR V, ANAND S, GEETHA T, et al.A twin unidirectional impulse turbine topology for OWC based wave energy plants[J]. Renewable energy, 2009, 34(3): 692-698.
[12] FALCÃO A F O, GATO L M C, HENRIQUES J C C, et al. A novel twin-rotor radial-inflow air turbine for oscillating-water-column wave energy converters[J]. Energy, 2015, 93: 2116-2125.
[13] 宫武旗, 伍儒康. 求解流线曲率法反命题的一种新型有限差分方法[J]. 西安交通大学学报, 2015, 49(3): 11-13, 49.
GONG W Q, WU R K.New finite difference scheme for solving inverse proposition of streamline curvature method[J]. Journal of Xi’an Jiaotong University, 2015, 49(3): 11-13, 49.
[14] CUI Y, HYUN B S.Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion[J]. International journal of naval architecture and ocean engineering, 2016, 8(5): 456-465.
[15] TAKAO M, SETOGUCHI T, NAGATA S, et al.A study on the effects of blade profile and non-uniform tip clearance of the Wells turbine[C]//Proceedings of ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal, 2009: 625-632.
[16] 黄忠洲, 余志, 蒋念东, 等. 规则往复流中Wells透平自起动过程的数值模拟和实验研究[J]. 太阳能学报, 2006, 27(3): 284-288.
HUANG Z Z, YU Z, JIANG N D, et al.Self-starting performance of Wells turbine in regular reciprocating airflow[J]. Acta energiae solaris sinica, 2006, 27(3): 284-288.
PDF(2608 KB)

Accesses

Citation

Detail

Sections
Recommended

/