DYNAMIC RESPONSE OF FLEXIBLE WIND TURBINE BLADES CONSIDERING LARGE-DEFLECTION

Wang Zedong, Wang Dian, Qi Liangwen, Chen Yan, Huang Zhihong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (2) : 143-151.

PDF(1947 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1947 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (2) : 143-151. DOI: 10.19912/j.0254-0096.tynxb.2022-1667

DYNAMIC RESPONSE OF FLEXIBLE WIND TURBINE BLADES CONSIDERING LARGE-DEFLECTION

  • Wang Zedong1, Wang Dian1, Qi Liangwen2, Chen Yan3, Huang Zhihong3
Author information +
History +

Abstract

Aiming at the problem of dynamic analysis failure of ultra-long flexible wind turbine blades under traditional linear (small deformation) conditions, a flexible blade model with the large-deflection structure is developed to study the dynamic response. The blade is simplified as a cantilever and discretely modeled by applying the large-deflection model which is derived from the Euler-Bernoulli beam. Then, the nonlinear aeroelastic dynamics equations of the blade model are established by using blade element momentum (BEM) theory, and time-domain simulations are performed by using the nonlinear Newmark method and Newton-Raphson method. The changes of the structural stiffness and the pose of the blade are considered throughout the process. Finally, the nonlinear model is applied to the DTU 10 MW wind turbine. The results show that the large-deflection model significantly increases the flapwise deflection and torsion angle of the blade tip in dynamic response, while slightly reduce the edgewise deflection. Meawhile, the large-deflection model significantly reduces the flapwise load of the blade root in dynamic response, while slightly increase the edgewise load of the blade root, which is different from the result of the linear model.

Key words

wind turbines / flexible blade / large-deflection / aeroelasticity / cross-section twist

Cite this article

Download Citations
Wang Zedong, Wang Dian, Qi Liangwen, Chen Yan, Huang Zhihong. DYNAMIC RESPONSE OF FLEXIBLE WIND TURBINE BLADES CONSIDERING LARGE-DEFLECTION[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 143-151 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1667

References

[1] JOSELIN HERBERT G M, INIYAN S, SREEVALSAN E, et al. A review of wind energy technologies[J]. Renewable and sustainable energy reviews, 2007, 11(6): 1117-1145.
[2] LEUNG D Y C, YANG Y. Wind energy development and its environmental impact: a review[J]. Renewable and sustainable energy reviews, 2012, 16(1): 1031-1039.
[3] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464): eaau2027.
[4] KALLESØE B S. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations[J]. Wind energy, 2007, 10(3): 209-230.
[5] HODGES D H.Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[R]. NASA TN D-7818, 1974.
[6] MANOLAS D I, RIZIOTIS V A, VOUTSINAS S G.Assessing the importance of geometric nonlinear effects in the prediction of wind turbine blade loads[J]. Journal of computational and nonlinear dynamics, 2015, 10(4): 041008.
[7] 陈严, 方郁锋, 刘雄, 等. 考虑风力机叶片截面扭转运动及外形变化的气动弹性分析[J]. 太阳能学报, 2014, 35(4): 553-561.
CHEN Y, FANG Y F, LIU X, et al.Aeroelastic analysis on section twist and shape change of wind turbine blade[J]. Acta energiae solaris sinica, 2014, 35(4): 553-561.
[8] 张新榃, 杨超, 吴志刚. 基于大变形梁模型的风力机叶片气动弹性分析[J]. 北京航空航天大学学报, 2014, 40(3): 327-332.
ZHANG X T, YANG C, WU Z G.Aeroelastic analysis method for wind turbine blade based on large deformation beam model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(3): 327-332.
[9] 曹九发, 王同光, 王枭. 大型风力机的几何非线性动态响应研究[J]. 振动与冲击, 2016, 35(14): 182-187, 214.
CAO J F, WANG T G, WANG X.Geometric nonlinear dynamics response of large-scale wind turbine[J]. Journal of vibration and shock, 2016, 35(14): 182-187, 214.
[10] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.
FU Z C, CHEN Z J, LIU Z Q.Geometric nonlinear aeroelastic behavior of high aspect ratio wings[J]. Engineering mechanics, 2017, 34(4): 231-240.
[11] 陈严, 张林伟, 刘雄, 等. 水平轴风力机柔性叶片气动弹性响应分析[J]. 太阳能学报, 2014, 35(1): 74-82.
CHEN Y, ZHANG L W, LIU X, et al.Response analysis of aeroelasticity for hawt flexible blade[J]. Acta energiae solaris sinica, 2014, 35(1): 74-82.
[12] 夏拥军, 缪谦. Euler-Bernoulli梁单元的完整二阶位移场[J]. 中国工程机械学报, 2011, 9(4): 416-420.
XIA Y J, MIAO Q.Complete second-order displacement field of Euler-Bernoulli beam element[J]. Chinese journal of construction machinery, 2011, 9(4): 416-420.
[13] GALVANETTO U, CRISFIELD M A.An energy-conserving co-rotational procedure for the dynamics of planar beam structures[J]. International journal for numerical methods in engineering, 1996, 39(13): 2265-2282.
[14] CLOUGH R W, PENZIEN J.Dynamics of structures[M]. 2nd ed. New York: McGraw-Hill, 1993.
[15] IEC 61400-1:2019, Wind energy generation systems—part 1: design requirements.
[16] 陈至达. 杆、板、壳大变形理论[M]. 北京: 科学出版社, 1994.
CHEN Z D.Large deformation theory of rod, plate and shell[M]. Beijing: Science Press, 1994.
[17] BAK C, ZAHLE F, BITSCHE R D, et al.The DTU 10-MW reference wind turbine[C]//Danish Wind Power Research 2013. Trinity, Fredericia, Denmark, 2013.
PDF(1947 KB)

Accesses

Citation

Detail

Sections
Recommended

/