PHOTOVOLTAIC POWER FORECASTING BASED ON DUAL-ATTENTION-GRU AND SIMILARITY MODIFICATION

He Wei, Su Zhongyuan, Shi Jinlin, Wu Yanlin, Ma Changliu, Wang Jun

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 480-487.

PDF(2633 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2633 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 480-487. DOI: 10.19912/j.0254-0096.tynxb.2022-1714

PHOTOVOLTAIC POWER FORECASTING BASED ON DUAL-ATTENTION-GRU AND SIMILARITY MODIFICATION

  • He Wei1, Su Zhongyuan1, Shi Jinlin2, Wu Yanlin3, Ma Changliu3, Wang Jun1
Author information +
History +

Abstract

A photovoltaic power forecasting model based on dual-attention-GRU network and similar sequences modification is proposed. On the basis of the Encoder-Decoder framework, feature attention and temporal attention are introduced, which can effectively solve the problem of GRU network’ s distraction from input features and time series. The DA-GRU forecasting results can be further improved by using the future power values of similar power sequences to modify the forecasting results. The example is verified by DKASC data, and the performance of the model under different forecasting steps is compared. The results show that DA-GRU has the best performance under different evaluation indexes compared with other traditional models, and the similar sequences modification method can further improve its forecasting accuracy.

Key words

photovoltaic power / neural network / power forecasting / attention mechanism / similarity modification

Cite this article

Download Citations
He Wei, Su Zhongyuan, Shi Jinlin, Wu Yanlin, Ma Changliu, Wang Jun. PHOTOVOLTAIC POWER FORECASTING BASED ON DUAL-ATTENTION-GRU AND SIMILARITY MODIFICATION[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 480-487 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1714

References

[1] AHMED R, SREERAM V, MISHRA Y, et al.A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[J]. Renewable and sustainable energy reviews, 2020, 124: 109792.
[2] DOLARA A, LEVA S, MANZOLINI G.Comparison of different physical models for PV power output prediction[J]. Solar energy, 2015, 119: 83-99.
[3] AGGA A, ABBOU A, LABBADI M, et al.CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production[J]. Electric power systems research, 2022, 208: 107908.
[4] DE LA PARRA I, MUÑOZ M, LORENZO E, et al. PV performance modelling: a review in the light of quality assurance for large PV plants[J]. Renewable and sustainable energy reviews, 2017, 78: 780-797.
[5] WANG M, PENG J Q, LUO Y M, et al.Comparison of different simplistic prediction models for forecasting PV power output: assessment with experimental measurements[J]. Energy, 2021, 224: 120162.
[6] BOLAND J, DAVID M, LAURET P.Short term solar radiation forecasting: island versus continental sites[J]. Energy, 2016, 113: 186-192.
[7] NIU D X, WANG K K, SUN L J, et al.Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study[J]. Applied soft computing, 2020, 93: 106389.
[8] 王献志, 曾四鸣, 周雪青, 等. 基于XGBoost联合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 236-242.
WANG X Z, ZENG S M, ZHOU X Q, et al.Power forecast of photovoltaic generation based on XGBoost combined model[J]. Acta energiae solaris sinica, 2022, 43(4): 236-242.
[9] 魏联滨, 王彬, 王莹, 等. 基于气象相似日选取与提升回归树的光伏发电短期功率预测[J]. 电子器件, 2022, 45(1): 183-188.
WEI L B, WANG B, WANG Y, et al.Short-term power forecast of photo-voltaic power generation based on weather similarity day and boosting regression tree[J]. Chinese journal of electron devices, 2022, 45(1): 183-188.
[10] LEE D H, KIM K.PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information[J]. Renewable energy, 2021, 173: 1098-1110.
[11] NIE Y H, ZAMZAM A S, BRANDT A.Resampling and data augmentation for short-term PV output prediction based on an imbalanced sky images dataset using convolutional neural networks[J]. Solar energy, 2021, 224: 341-354.
[12] MARKOVICS D, MAYER M J.Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction[J]. Renewable and sustainable energy reviews, 2022, 161: 112364.
[13] CHEN H L, CHANG X F. Photovoltaic power prediction of LSTM model based on Pearson feature selection[EB/OL].2015: arXiv:1511.04868v2. https://arxiv.org/abs/1511.04868v2.
[14] JAITLY N, LE Q V, VINYALS O, et al. An online sequence-to-sequence model using partial conditioning[J]. Computer science, 2015:DOI: 10.48550/arXiv.1511.04868.
[15] CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. 2014: arXiv: 1406.1078. http://arxiv.org/abs/1406.1078.pdf.
[16] FAZLIPOUR Z, MASHHOUR E, JOORABIAN M.A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism[J]. Applied energy, 2022, 327: 120063.
[17] DKASC: Array 3-B, 38.3 kW, mono-Si, Roof, 2016-2017,Yulara Solar System. https://dkasolarcentre.com.au/source/yulara/yulara-3-roof-sails-in-the-desert-1-1.
[18] DKASC: Array 3-C, 45.78 kW, mono-Si, Roof, 2017-2018,Yulara Solar System. https://dkasolarcentre.com.au/source/yulara/yulara-3-roof-sails-in-the-desert-1.
PDF(2633 KB)

Accesses

Citation

Detail

Sections
Recommended

/