PHOTOVOLTAIC CONVERGENCE TREND QUANTIFICATION METHOD BASED ON HIERARCHICAL CLUSTERING AND SCENARIOS

Yang Xiyun, Liu Han, Chen Wenjin, Peng Yan, Chen Jingwei, Wang Chenxu

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 496-505.

PDF(2517 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2517 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 496-505. DOI: 10.19912/j.0254-0096.tynxb.2022-1731

PHOTOVOLTAIC CONVERGENCE TREND QUANTIFICATION METHOD BASED ON HIERARCHICAL CLUSTERING AND SCENARIOS

  • Yang Xiyun1, Liu Han1, Chen Wenjin2, Peng Yan3, Chen Jingwei2, Wang Chenxu3
Author information +
History +

Abstract

The continuous power curve can reflect the law of long-term fluctuation characteristics. By studying the known continuous power curve of photovoltaic clusters, a prediction model is established to reveal the convergence evolution law of clusters of different scales, and finally, the continuous power curve of the photovoltaic cluster to be built is obtained. Firstly, the hierarchical clustering algorithm is used to determine the hierarchical order of the aggregation scale of photovoltaic clusters, and the photovoltaic clusters with the installed capacity increasing layer by layer are obtained, and propose aggregation effect indicators to verify the effectiveness of the sequence. Secondly, in order to better predict the change trend of the photovoltaic continuous power curve, and divide the output scene of the continuous power curve. Finally, in order to avoid the prediction deviation of a single model, in each output scene, the improved information entropy combination prediction model is used to grasp the scale evolution law in the aggregation process and complete the prediction of the continuous power curve of the cluster to be built. The simulation results using the measured data in a certain area in Hebei show that the cluster hierarchical order obtained by verifying the clustering method can better reflect the convergence effect and effectively improve the prediction accuracy; the output scene division accurately describes the convergence trend of the continuous power curve of the cluster; and the improved information entropy combination prediction model can more accurately complete the quantitative analysis of the continuous power characteristics of the photovoltaic cluster to be built.

Key words

PV power / hierarchical clustering / smoothing effect / duration curve / combined prediction

Cite this article

Download Citations
Yang Xiyun, Liu Han, Chen Wenjin, Peng Yan, Chen Jingwei, Wang Chenxu. PHOTOVOLTAIC CONVERGENCE TREND QUANTIFICATION METHOD BASED ON HIERARCHICAL CLUSTERING AND SCENARIOS[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 496-505 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1731

References

[1] YU S W, ZHENG Y L, LI L X.A comprehensive evaluation of the development and utilization of China’s regional renewable energy[J]. Energy policy, 2019, 127: 73-86.
[2] BROŻYNA J, STRIELKOWSKI W, FOMINA A, et al. Renewable energy and EU 2020 target for energy efficiency in the Czech republic and Slovakia[J]. Energies, 2020, 13(4): 965.
[3] ZHANG W D, LIU Z M.Simulation and analysis of the power output fluctuation of photovoltaic modules based on NREL one-minute irradiance data[C]//2013 International Conference on Materials for Renewable Energy and Environment. Chengdu, China, 2013: 21-25.
[4] MILLS A,AHLSTROM M,BROWER M.Understanding variability and uncertainty of photovoltaics for integration with the electric power system[R]. DE20121048297, 2011.
[5] 吴振威, 蒋小平, 马会萌, 等. 多时间尺度的光伏出力波动特性研究[J]. 现代电力, 2014, 31(1): 58-61.
WU Z W, JIANG X P, MA H M, et al.Study on fluctuations characteristics of photovoltaic power output in different time scales[J]. Modern electric power, 2014, 31(1): 58-61.
[6] 陈逍潇, 张粒子, 杨萌, 等. 考虑光伏发电功率波动性的AGC备用容量分析方法[J]. 电力系统自动化, 2015, 39(22): 16-21, 52.
CHEN X X, ZHANG L Z, YANG M, et al.A method for AGC reserve capacity analysis considering photovoltaic power fluctuation characteristics[J]. Automation of electric power systems, 2015, 39(22): 16-21, 52.
[7] 崔杨, 穆钢, 刘玉, 等. 风电功率波动的时空分布特性[J]. 电网技术, 2011, 35(2): 110-114.
CUI Y, MU G, LIU Y, et al.Spatiotemporal distribution characteristic of wind power fluctuation[J]. Power system technology, 2011, 35(2): 110-114.
[8] 尹佳楠, 葛延峰, 高凯. 风电场群出力的汇聚效应分析[J]. 电测与仪表, 2015, 52(5): 104-108.
YIN J N, GE Y F, GAO K.Analysis on clustering effect of wind generations[J]. Electrical measurement & instrumentation, 2015, 52(5): 104-108.
[9] 刘燕华, 田茹, 张东英, 等. 风电出力平滑效应的分析与应用[J]. 电网技术, 2013, 37(4): 987-991.
LIU Y H, TIAN R, ZHANG D Y, et al.Analysis and application of wind farm output smoothing effect[J]. Power system technology, 2013, 37(4): 987-991.
[10] 穆钢, 杨修宇, 严干贵, 等. 基于风电场群汇聚演变趋势的场群持续功率特性预测方法[J]. 中国电机工程学报, 2018, 38(增刊1): 32-38.
MU G, YANG X Y, YAN G G, et al.Prediction method of the durative characteristic for wind farm cluster based on cumulative evolution tendency[J]. Proceedings of the CSEE, 2018, 38(S1): 32-38.
[11] 崔杨, 李焕奇, 严干贵, 等. 计及汇聚特性的光伏电站群集中外送输电容量优化配置方法[J]. 电网技术, 2015, 39(12): 3491-3496.
CUI Y, LI H Q, YAN G G, et al.An optimization method to determine integrated power transmission capacity of clustering photovoltaic plants based on clustering effect[J]. Power system technology, 2015, 39(12): 3491-3496.
[12] 崔杨, 曲钰, 仲悟之, 等. 基于改进Shapley值的风电汇聚趋势性分状态量化方法[J]. 电网技术, 2019, 43(6): 2094-2102.
CUI Y, QU Y, ZHONG W Z, et al.Research on sub-state quantization method of wind convergence trend based on improved Shapley value[J]. Power system technology, 2019, 43(6): 2094-2102.
[13] 穆钢, 崔杨, 严干贵. 确定风电场群功率汇聚外送输电容量的静态综合优化方法[J]. 中国电机工程学报, 2011, 31(1): 15-19.
MU G, CUI Y, YAN G G.A static optimization method to determine integrated power transmission capacity of clustering wind farms[J]. Proceedings of the CSEE, 2011, 31(1): 15-19.
[14] 姚宏民, 杜欣慧, 秦文萍. 基于密度峰值聚类及GRNN神经网络的光伏发电功率预测方法[J]. 太阳能学报, 2020, 41(9): 184-190.
YAO H M, DU X H, QIN W P.PV power forecasting approach based on density peaks clustering and general regression neural network[J]. Acta energiae solaris sinica, 2020, 41(9): 184-190.
PDF(2517 KB)

Accesses

Citation

Detail

Sections
Recommended

/