EXTREME SEA STATE PREDICTION MODEL BASED ON EMD-LSTM MULTIVARIABLE INPUT

Zhang Huidong, Chen Lixian, Zhang Dekang, Shi Hongda

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 193-200.

PDF(3739 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3739 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 193-200. DOI: 10.19912/j.0254-0096.tynxb.2022-1759

EXTREME SEA STATE PREDICTION MODEL BASED ON EMD-LSTM MULTIVARIABLE INPUT

  • Zhang Huidong, Chen Lixian, Zhang Dekang, Shi Hongda
Author information +
History +

Abstract

The extreme sea state is generated by the combined action of various external factors. The traditional univariable wave prediction model cannot consider the influence of multiple variables. Therefore, the EMD-LSTM multivariable input model is constructed to predict the extreme sea state. By using the improved EMD algorithm to process the data set measured by wave buoy, the influence of variable end effect and non-stationarity can be eliminated and thus the prediction accuracy of the multivariable input model can be improved. The results show that the multivariable composite model can make an effective early warning on extreme sea conditions, and the model has the best prediction performance after introducing three key factors such as wave height, wind speed and gust speed into the input layer. Indicated by the root mean square error and Nash-Sutcliffe efficiency, the prediction performance of multivariable input model is significantly improved in comparison with the univariable input model.

Key words

wave propagation / prediction / LSTM / multivariable composite model / end effect / nonstationarity

Cite this article

Download Citations
Zhang Huidong, Chen Lixian, Zhang Dekang, Shi Hongda. EXTREME SEA STATE PREDICTION MODEL BASED ON EMD-LSTM MULTIVARIABLE INPUT[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 193-200 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1759

References

[1] ZHENG C W, PAN J, LI J X.Assessing the China Sea wind energy and wave energy resources from 1988 to 2009[J]. Ocean engineering, 2013, 65: 39-48.
[2] JIANG H, DUAN S L, HUANG L M, et al.Scale effects in AR model real-time ship motion prediction[J]. Ocean engineering, 2020, 203: 107202.
[3] 张振全, 李醒飞, 杨少波. 基于AR-SVR模型的有效波高短期预测[J]. 太阳能学报, 2021, 42(7): 15-20.
ZHANG Z Q, LI X F, YANG S B.Short-term prediction of significant wave height based on AR-SVR model[J]. Acta energiae solaris sinica, 2021, 42(7): 15-20.
[4] LAW Y Z, SANTO H, LIM K Y, et al.Deterministic wave prediction for unidirectional sea-states in real-time using artificial neural network[J]. Ocean engineering, 2020, 195: 106722.
[5] DESOUKY M A A, ABDELKHALIK O. Wave prediction using wave rider position measurements and NARX network in wave energy conversion[J]. Applied ocean research, 2019, 82: 10-21.
[6] GOPINATH D I, DWARAKISH G S.Wave prediction using neural networks at new Mangalore Port along west coast of India[J]. Aquatic procedia, 2015, 4: 143-150.
[7] FAN S T, XIAO N H, DONG S.A novel model to predict significant wave height based on long short-term memory network[J]. Ocean engineering, 2020, 205: 107298.
[8] ZHANG T, ZHENG X Q, LIU M X.Multiscale attention-based LSTM for ship motion prediction[J]. Ocean engineering, 2021, 230: 109066.
[9] 强亚蓉. 基于EMD方法的时间序列分析和预测[D]. 兰州: 西北师范大学, 2020.
QIANG Y R.Time series analysis and prediction based on EMD technology[D]. Lanzhou: Northwest Normal University, 2020.
[10] 戴邵武, 陈强强, 刘志豪, 等. 基于EMD-LSTM的时间序列预测方法[J]. 深圳大学学报(理工版), 2020, 37(3): 265-270.
DAI S W, CHEN Q Q, LIU Z H, et al.Time series prediction based on EMD-LSTM model[J]. Journal of Shenzhen University (science and engineering), 2020, 37(3): 265-270.
[11] DIXIT P, LONDHE S.Prediction of extreme wave heights using neuro wavelet technique[J]. Applied ocean research, 2016, 58: 241-252.
[12] ZHOU Z Y, SUN S W, GAO Y.Short-term wind power prediction based on EMD-LSTM[C]//2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA). Shenyang, China, 2023: 802-807.
[13] 朱玥, 顾洁, 孟璐. 基于EMD-LSTM的光伏发电预测模型[J]. 电力工程技术, 2020, 39(2): 51-58.
ZHU Y, GU J, MENG L.Photovoltaic power generation prediction model based on EMD-LSTM[J]. Electric power engineering technology, 2020, 39(2): 51-58.
[14] GE Y J, NAN Y R, BAI L J.A hybrid prediction model for solar radiation based on long short-term memory, empirical mode decomposition, and solar profiles for energy harvesting wireless sensor networks[J]. Energies, 2019, 12(24): 4762.
[15] 张茴栋, 张德康, 史宏达. 非线性非平稳波浪极短期预测的复合优化模型[J]. 哈尔滨工程大学学报, 2022, 43(4): 509-515.
ZHANG H D, ZHANG D K, SHI H D.Compound optimization model for extremely short-term predictions of nonlinear and nonstationary time series of waves[J]. Journal of Harbin Engineering University, 2022, 43(4): 509-515.
[16] JAIN S K, SUDHEER K P.Fitting of hydrologic models: a close look at the nash-sutcliffe index[J]. Journal of hydrologic engineering, 2008, 13(10): 981-986.
[17] 张彪, 彭秀艳, 高杰. 基于ELM-EMD-LSTM组合模型的船舶运动姿态预测[J]. 船舶力学, 2020, 24(11): 1413-1421.
ZHANG B, PENG X Y, GAO J.Ship motion attitude prediction based on ELM-EMD-LSTM integrated model[J]. Journal of ship mechanics, 2020, 24(11): 1413-1421.
PDF(3739 KB)

Accesses

Citation

Detail

Sections
Recommended

/