STUDY ON OSCILLATION MECHANISM AND FEATURES OF DOUBLY-FED WIND TURBINES WITH OPERATING PARAMETERS CHANGINGS

Cao Na, Su Yani, Yu Qun

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 54-64.

PDF(2930 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2930 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 54-64. DOI: 10.19912/j.0254-0096.tynxb.2022-1777

STUDY ON OSCILLATION MECHANISM AND FEATURES OF DOUBLY-FED WIND TURBINES WITH OPERATING PARAMETERS CHANGINGS

  • Cao Na, Su Yani, Yu Qun
Author information +
History +

Abstract

In order to study the coupling between the wind turbine power and each link of the unit and the influence on the output power of the unit, a double-fed wind turbine is used as an example, Firstly, the energy functions of each subsystem are derived taking into account the tower shadow effect, wind shear and wind speed. Then, the energy variation of each subsystem and the oscillation characteristics of the unit output power are analyzed considering the damping of the turbine and wind speed variation. Finally, the power propagation mechanism and power oscillation characteristics of wind turbine are analyzed through energy changes on the PSCAD/EMTDC platform. The simulation results show that the energy of each subsystem increases greatly when the low frequency oscillation power of the turbine passes through the negatively damped DFIG. The output power of the turbine contains low frequency oscillation and sub-synchronous oscillation, and the amplitude and frequency of oscillation vary with wind speed and damping of the turbine. The energy consumed by the DFIG is mainly determined by the wind turbine subsystem when the wind speed changes.

Key words

doubly-fed wind turbine / sub-synchronous oscillations / low frequency oscillations / tower shadow effect and wind shear / coupling / converter control parameters

Cite this article

Download Citations
Cao Na, Su Yani, Yu Qun. STUDY ON OSCILLATION MECHANISM AND FEATURES OF DOUBLY-FED WIND TURBINES WITH OPERATING PARAMETERS CHANGINGS[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 54-64 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1777

References

[1] 胡丹梅, 潘扬, 张建平. 大型水平轴风力机塔影效应特性研究[J]. 动力工程学报, 2018, 38(3): 237-245.
HU D M, PAN Y, ZHANG J P.Characteristic study on tower shadow effect of large-scale horizontal-axis wind turbines[J]. Journal of Chinese Society of Power Engineering, 2018, 38(3): 237-245.
[2] 成立峰, 万书亭, 绳晓玲. 叶片数目对风力机等效风速空间分布的影响研究[J]. 太阳能学报, 2019, 40(11): 3273-3280.
CHENG L F, WAN S T, SHENG X L.Effect of blades number on spatial distribution of equivalent wind speed[J]. Acta energiae solaris sinica, 2019, 40(11): 3273-3280.
[3] 谭谨, 胡维昊, 王晓茹, 等. 变速风电系统形成强迫功率振荡扰动源分析[J]. 太阳能学报, 2015, 36(5): 1088-1096.
TAN J, HU W H, WANG X R, et al.Analysis of disturbance source inducing by the variable speed wind turbine system forced power oscillations[J]. Acta energiae solaris sinica, 2015, 36(5): 1088-1096.
[4] 温斌荣, 魏莎, 魏克湘, 等. 风切变和塔影效应对风力机输出功率的影响[J]. 机械工程学报, 2018, 54(10): 124-132.
WEN B R, WEI S, WEI K X, et al.Influences of wind shear and tower shadow on the power output of wind turbine[J]. Journal of mechanical engineering, 2018, 54(10): 124-132.
[5] 万书亭, 程侃如, 绳晓玲, 等. 基于等效风速的风电机组参数对输出功率波动和功率损失特性的影响[J]. 太阳能学报, 2022, 43(1): 125-131.
WAN S T, CHENG K R, SHENG X L, et al.Effects of wind turbines parameters on output power fluctuation and power loss characteristics based on equivalent wind speed[J]. Acta energiae solaris sinica, 2022, 43(1): 125-131.
[6] 李少林, 张兴, 谢震, 等. 双馈风力发电系统3次功率脉动的研究[J]. 电网技术, 2010, 34(4): 37-42.
LI S L, ZHANG X, XIE Z, et al.Study on the third harmonic power pulsation in doubly-fed wind power generation system[J]. Power system technology, 2010, 34(4): 37-42.
[7] 陈哲. 电力系统低频振荡辨识及内共振的研究[D]. 北京: 华北电力大学, 2018.
CHEN Z.Identification of low frequency oscillation in power system and research of internal resonance[D]. Beijing: North China Electric Power University, 2018.
[8] 武晓冬, 田慕琴, 朱燕芳, 等. 风剪切和塔影效应作用下直驱式风电并网系统虚拟惯量控制[J]. 电力系统保护与控制, 2018, 46(18): 93-99.
WU X D, TIAN M Q, ZHU Y F, et al.Direct-drive wind power integrated system with virtual inertia control considering wind shear and tower shadow effect[J]. Power system protection and control, 2018, 46(18): 93-99.
[9] 李光辉, 王伟胜, 张兴, 等. 双馈风电场并网次/超同步振荡建模与机理分析(一):考虑功率外环的阻抗建模[J]. 中国电机工程学报, 2022, 42(7): 2438-2449.
LI G H, WANG W S, ZHANG X, et al.Modeling and suppression method of sub/super-synchronous oscillation of grid-connected DFIG wind farms(partⅠ): sequence impedance modeling and analysis of DFIG wind turbines considering power loop[J]. Proceedings of the CSEE, 2022, 42(7): 2438-2449.
[10] 栗然, 卢云, 刘会兰, 等. 双馈风电场经串补并网引起次同步振荡机理分析[J]. 电网技术, 2013, 37(11): 3073-3079.
LI R, LU Y, LIU H L, et al.Mechanism analysis on subsynchronous oscillation caused by grid-integration of doubly fed wind power generation system via series compensation[J]. Power system technology, 2013, 37(11): 3073-3079.
[11] 吴天昊, 谢小荣, 姜齐荣. 风电系统次同步等幅振荡的机理与特性分析[J]. 中国电机工程学报, 2023, 43(7): 2689-2699.
WU T H, XIE X R, JIANG Q R.On subsynchronous sustained oscillation issues of wind power systems[J]. Proceedings of the CSEE, 2023, 43(7): 2689-2699.
[12] 王一珺, 杜文娟, 王海风. 基于改进复转矩系数法的多风电场接入引发多机电力系统次同步振荡机理分析[J]. 中国电机工程学报, 2021, 41(7): 2383-2395.
WANG Y J, DU W J, WANG H F.Analysis of subsynchronous oscillation in multi-machine power system caused by the integration of multiple wind farms based on improved complex torque coefficient method[J]. Proceedings of the CSEE, 2021, 41(7): 2383-2395.
[13] 陈磊, 闵勇, 胡伟. 基于振荡能量的低频振荡分析与振荡源定位 (一)理论基础与能量流计算[J]. 电力系统自动化, 2012, 36(3): 22-27, 86.
CHEN L, MIN Y, HU W.Low frequency oscillation analysis and oscillation source location based on oscillation energy part one mathematical foundation and energy flow computation[J]. Automation of electric power systems, 2012, 36(3): 22-27, 86.
[14] CHEN L, XU F, MIN Y, et al.Evaluation of damping of windings in a generator using oscillation energy dissipation[C]//2014 IEEE PES General Meeting Conference & Exposition. National Harbor, MD, USA, 2014: 1-5.
[15] MA J, SHEN Y Q.Stability assessment of DFIG subsynchronous oscillation based on energy dissipation intensity analysis[J]. IEEE transactions on power electronics, 2020, 35(8): 8074-8087.
[16] 曹娜, 赵旭, 于群. 基于暂态能量流的双馈风电机组强迫振荡源定位[J]. 电力系统自动化, 2020, 44(10): 103-110.
CAO N, ZHAO X, YU Q.Forced oscillation source location of doubly-fed wind turbine based on transient energy flow[J]. Automation of electric power systems, 2020, 44(10): 103-110.
[17] 刘俊磊, 曹娜, 钱峰, 等. 考虑双馈风电机组变流器控制参数的风电场内机组振荡分析[J]. 电力系统自动化, 2021, 45(10): 42-49.
LIU J L, CAO N, QIAN F, et al.Analysis of unit oscillation in wind farm considering control parameters of converter for DFIG-based wind turbine[J]. Automation of electric power systems, 2021, 45(10): 42-49.
[18] 曹娜, 万珂, 于群. 考虑风速变化的双馈风电机组暂态能量函数及振荡分析[J]. 电力系统自动化, 2022, 46(20): 92-99.
CAO N, WAN K, YU Q.Transient energy function and oscillation analysis of doubly-fed wind turbines considering variation of wind speed[J]. Automation of electric power systems, 2022, 46(20): 92-99.
[19] HUANG Y H, WANG D.Effect of control-loops interactions on power stability limits of VSC integrated to AC system[J]. IEEE transactions on power delivery, 2018, 33(1): 301-310.
[20] 张伟, 胡海岩. 非线性动力学理论与应用的新进展[M]. 北京: 科学出版社, 2009.
ZHANG W, HU H Y.New progress in theory and application of nonlinear dynamics[M]. Beijing: Science Press, 2009.
PDF(2930 KB)

Accesses

Citation

Detail

Sections
Recommended

/