INFRARED DETECTION OF GEOMEMBRANE DEFECTS USING SOLAR ENERGY

Ma Yue, Teng Wei

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 603-608.

PDF(2332 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2332 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 603-608. DOI: 10.19912/j.0254-0096.tynxb.2022-1816

INFRARED DETECTION OF GEOMEMBRANE DEFECTS USING SOLAR ENERGY

  • Ma Yue, Teng Wei
Author information +
History +

Abstract

Taking the geomembrane floating cover of the anaerobic lagoons in the sewage treatment plant as the research object, through the method of experimental investigation, the thermal imaging technology based on solar thermal wave excitation is adopted to detect the crack defects on the high-density polyethylene (HDPE) geomembrane samples. The proposed method utilizes the naturally occurring heat source (solar radiation) as the thermal wave excitation and verifies the feasibility of exploiting short-term fluctuations in solar radiation thermal wave excitation caused by cloud shading for infrared structure health monitoring. In addition, the transient temperature change process is used to compare the infrared thermal image sequence to enhance the temperature contrast of the defect area. The experiment results suggest that the transient temperature response of structures observed using fluctuations in solar radiation can be used to identify crack defects on the geomembrane. This study provides a reliable detection method for improving the reliability of large-area infrared structural health monitoring without the aid of artificial heat sources outdoors.

Key words

solar energy / geomembrane / infrared thermography / geomembrane / sewage treatment

Cite this article

Download Citations
Ma Yue, Teng Wei. INFRARED DETECTION OF GEOMEMBRANE DEFECTS USING SOLAR ENERGY[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 603-608 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1816

References

[1] CHIU W K, ONG W H, KUEN T, et al.Large structures monitoring using unmanned aerial vehicles[J]. Procedia engineering, 2017, 188: 415-423.
[2] MA Y, ROSE F, WONG L, et al.Detection of defects in geomembranes using quasi-active infrared thermography[J]. Sensors, 2021, 21(16): 5365.
[3] 刘颖韬, 郭广平, 曾智, 等. 红外热像无损检测技术的发展历程、现状和趋势[J]. 无损检测, 2017, 39(8): 63-70.
LIU Y T, GUO G P, ZENG Z, et al.The development history, status and trends of infrared thermographic nondestructive testing[J]. Nondestructive testing technologying, 2017, 39(8): 63-70.
[4] GB/T 28706—2012,无损检测机械及电气设备红外成像检测方法[S].
GB/T 28706—2012, Non-destructive testing test method for mechanical and electrical equipment with infrared thermography[S].
[5] KAFIEH R, LOTFI T, AMIRFATTAHI R.Automatic detection of defects on polyethylene pipe welding using thermal infrared imaging[J]. Infrared physics & technology, 2011, 54(4): 317-325.
[6] MA Y E, WONG L, VIEN B S, et al.Quasi-active thermal imaging of large floating covers using ambient solar energy[J]. Remote sensing, 2020, 12(20): 3455.
[7] Apogee. Apogee instruments owner’s manual pyranometer models SP-110 and SP-230, 2020, Apogee: Logan, UT, USA[S].
[8] FLIR. User’s manual FLIR A6xx series, 2016, R systems: Wilsonville, OR, USA[S].
[9] 尹玉, 张永, 王健, 等. 基于热红外图像的风力机叶片损伤识别方法研究[J]. 太阳能学报, 2022, 43(2): 492-497.
YIN Y, ZHANG Y, WANG J, et al.Research on wind turbine blade damage identification method based on thermal infrared image[J]. Acta energiae solaris sinica, 2022, 43(2): 492-497.
[10] 吴国境, 王健, 张永, 等. 自然激励下风电叶片损伤的红外热像检测研究[J]. 太阳能学报, 2020, 41(9): 353-358.
WU G J, WANG J, ZHANG Y, et al.Research on infrared thermal image detection of wind turbine blade damage under natural excitation[J]. Acta energiae solaris sinica, 2020, 41(9): 353-358.
PDF(2332 KB)

Accesses

Citation

Detail

Sections
Recommended

/