SPATIOTEMPORAL CORRELATION MAPPING AND PREDICTION MODELING OF IRRADIANCE BASED ON SATELLITE REMOTE SENSING

Wang Fei, Li Na, Su Ying, Sun Yong, Yang Heng, Zhen Zhao

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 1-9.

PDF(2857 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2857 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 1-9. DOI: 10.19912/j.0254-0096.tynxb.2022-1827

SPATIOTEMPORAL CORRELATION MAPPING AND PREDICTION MODELING OF IRRADIANCE BASED ON SATELLITE REMOTE SENSING

  • Wang Fei1, Li Na1,2, Su Ying3, Sun Yong3, Yang Heng3, Zhen Zhao1
Author information +
History +

Abstract

Conventional PV power stations can only rely on local surface meteorological observation information for irradiance forecasting, and it is difficult to tap the spatio-temporal correlation characteristics of wide area photovoltaic resources around the power station for these kinds of stations, which limits the forecasting accuracy of irradiance and PV power. To solve the above problems, this paper proposes a mapping method for the spatial distribution of wide area irradiance around PV power station based on satellite remote sensing, and establishes an ultra-short-term spatio-temporal correlation forecasting model for surface irradiance based on graph convolutional network (GCN). The method makes full use of multi-channel satellite data and considers the spatio-temporal correlation characteristics to improve the ultra-short-term prediction accuracy of surface irradiance. The feasibility of the inversion model of surface irradiance is verified through the simulation analysis of a photovoltaic station, and the progressiveness of the corresponding spatial-temporal correlation prediction model is also proved.

Key words

satellite / feature selection / solar irradiance / inversion / GCN / ultra-short-term forecasting of surface irradiance

Cite this article

Download Citations
Wang Fei, Li Na, Su Ying, Sun Yong, Yang Heng, Zhen Zhao. SPATIOTEMPORAL CORRELATION MAPPING AND PREDICTION MODELING OF IRRADIANCE BASED ON SATELLITE REMOTE SENSING[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1827

References

[1] ALMOROX J, VOYANT C, BAILEK N, et al.Total solar irradiance’s effect on the performance of empirical models for estimating global solar radiation: an empirical-based review[J]. Energy, 2021, 236: 121486.
[2] NOURANI V, SHARGHI E, BEHFAR N, et al.Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data[J]. Applied energy, 2022, 315: 119069.
[3] 孟丹, 陈正洪, 孙朋杰, 等. 复杂山区气象站潜在太阳能资源参量估算方法及应用[J]. 水电能源科学, 2022, 40(6): 211-214.
MENG D, CHEN Z H, SUN P J, et al.Estimation method of potential solar energy resources parameters of meteorological stations in complex mountainous areas and its application[J]. Water resources and power, 2022, 40(6): 211-214.
[4] WANG F, LU X X, MEI S W, et al.A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant[J]. Energy, 2022, 238: 121946.
[5] WANG F, XUAN Z M, ZHEN Z, et al.A minutely solar irradiance forecasting method based on real-time sky image-irradiance mapping model[J]. Energy conversion and management, 2020, 220: 113075.
[6] 米增强, 王飞, 杨光, 等. 光伏电站辐照度ANN预测及其两维变尺度修正方法[J]. 太阳能学报, 2013, 34(2): 251-259.
MI Z Q, WANG F, YANG G, et al.ANN based irradiance forecast of photovoltaic power plant and two dimensions variable scale modification method for the forecast value[J]. Acta energiae solaris sinica, 2013, 34(2): 251-259.
[7] 刘晓艳, 王珏, 姚铁锤, 等. 基于卫星遥感的超短期分布式光伏功率预测[J]. 电工技术学报, 2022, 37(7): 1800-1809.
LIU X Y, WANG J, YAO T C, et al.Ultra short-term distributed photovoltaic power prediction based on satellite remote sensing[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1800-1809.
[8] 程礼临, 臧海祥, 卫志农, 等. 考虑多光谱卫星遥感的区域级超短期光伏功率预测[J]. 中国电机工程学报, 2022, 42(20): 7451-7465.
CHENG L L, ZANG H X, WEI Z N, et al.Ultra-short-term forecasting of regional photovoltaic power generation considering multispectral satellite remote sensing data[J]. Proceedings of the CSEE, 2022, 42(20): 7451-7465.
[9] WANG F, ZHANG Z Y, LIU C, et al.Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting[J]. Energy conversion and management, 2019, 181: 443-462.
[10] KHODAYAR M, MOHAMMADI S, KHODAYAR M E, et al.Convolutional graph autoencoder: a generative deep neural network for probabilistic spatio-temporal solar irradiance forecasting[J]. IEEE transactions on sustainable energy, 2020, 11(2): 571-583.
[11] GENG X L, XU L Y, HE X Y, et al.Graph optimization neural network with spatio-temporal correlation learning for multi-node offshore wind speed forecasting[J]. Renewable energy, 2021, 180: 1014-1025.
[12] CHENG L L, ZANG H X, DING T, et al.Multi-meteorological-factor-based graph modeling for photovoltaic power forecasting[J]. IEEE transactions on sustainable energy, 2021, 12(3): 1593-1603.
[13] GAO Y, MIYATA S, AKASHI Y.Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention[J]. Applied energy, 2022, 321: 119288.
[14] 赵文杰, 李洪平, 刘海行. SMAP卫星的RBF神经网络海表盐度遥感反演[J]. 海洋科学进展, 2022, 40(3): 513-522.
ZHAO W J, LI H P, LIU H X.Remote sensing retrieval of sea surface salinity based on RBF neural network from SMAP satellite[J]. Advances in marine science, 2022, 40(3): 513-522.
[15] 姚一飞, 王爽, 张珺锐, 等. 基于GF-1卫星遥感的河套灌区土壤含水率反演模型研究[J]. 农业机械学报, 2022, 53(9): 239-251.
YAO Y F, WANG S, ZHANG J R, et al.Inversion model of soil moisture in Hetao irrigation district based on GF-1 satellite remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 239-251.
[16] 冯小兵, 曾宇怀, 吴泽鹏, 等. 基于卫星多光谱的广东亚热带森林FMC遥感反演[J]. 电子科技大学学报, 2022, 51(3): 432-437.
FENG X B, ZENG Y H, WU Z P, et al.Remote sensing retrieval of FMC in subtropical forests of Guangdong based on satellite multispectral data[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(3): 432-437.
[17] 刘喆, 赵威伦, 田晓青, 等. 利用葵花8号卫星资料反演中国东部地区地面PM2.5浓度[J]. 北京大学学报(自然科学版), 2022, 58(3): 443-452.
LIU Z, ZHAO W L, TIAN X Q, et al.Retrieval of ground PM2.5 concentrations in Eastern China using data from himawari-8 satellite[J]. Acta scientiarum naturalium universitatis pekinensis, 2022, 58(3): 443-452.
[18] 刘科学. 基于环境卫星数据的黑河地区地表温度和净辐射反演研究[D]. 广州: 华南农业大学, 2017.
LIU K X.Land surface temperature and net radiation retrieval in Heihe River from HJ satellite data[D]. Guangzhou: South China Agricultural University, 2017.
[19] 梁师. 基于MODIS/Aqua数据反演地表短波净辐射[D]. 北京: 中国地质大学(北京), 2012.
LIANG S.Estimate of net surface shortwave radiation from MODIS data in aqua satellite[D]. Beijing: China University of Geosciences, 2012.
[20] 曲文龙, 陈笑屹, 李一漪, 等. 一种深度梯度提升回归预测模型[J]. 计算机应用与软件, 2020, 37(9): 194-201.
QU W L, CHEN X Y, LI Y Y, et al.A regression prediction model of depth gradient boosting[J]. Computer applications and software, 2020, 37(9): 194-201.
[21] SU Y, LI N, YANG H, et al.A feature importance analysis based solar irradiance mapping model using multi-channel satellite remote sensing data[C]//2022 IEEE/IAS 58th Industrial and Commercial Power Systems Technical Conference (I&CPS). Las Vegas, NV, USA, 2022: 1-9.
[22] 单存博. 基于数据挖掘的太阳辐射预测方法研究[D]. 北京: 华北电力大学, 2021.
SHAN C B.Research on solar radiation forecasting method based on data mining[D]. Beijing: North China Electric Power University, 2021.
[23] 王飞, 米增强, 甄钊, 等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学报, 2013, 33(34): 75-82, 14.
WANG F, MI Z Q, ZHEN Z, et al.A classified forecasting approach of power generation for photovoltaic plants based on weather condition pattern recognition[J]. Proceedings of the CSEE, 2013, 33(34): 75-82, 14.
[24] 纪德洋, 金锋, 冬雷, 等. 基于皮尔逊相关系数的光伏电站数据修复[J]. 中国电机工程学报, 2022, 42(4): 1514-1523.
JI D Y, JIN F, DONG L, et al.Data repairing of photovoltaic power plant based on Pearson correlation coefficient[J]. Proceedings of the CSEE, 2022, 42(4): 1514-1523.
[25] 张爱武, 董喆, 康孝岩. 基于XGBoost的机载激光雷达与高光谱影像结合的特征选择算法[J]. 中国激光, 2019, 46(4): 150-158.
ZHANG A W, DONG Z, KANG X Y.Feature selection algorithms of airborne LiDAR combined with hyperspectral images based on XGBoost[J]. Chinese journal of lasers, 2019, 46(4): 150-158.
[26] 王丽, 王涛, 肖巍, 等. XGBoost启发的双向特征选择算法[J]. 吉林大学学报(理学版), 2021, 59(3): 627-634.
WANG L, WANG T, XIAO W, et al.Bidirectional feature selection algorithm inspired by XGBoost[J]. Journal of Jilin University (science edition), 2021, 59(3): 627-634.
[27] ALDRICH C.Process variable importance analysis by use of random forests in a shapley regression framework[J]. Minerals, 2020, 10(5): 420.
[28] 刘菡, 王英男, 李新利, 等. 基于互信息-图卷积神经网络的燃煤电站NOx排放预测[J]. 中国电机工程学报, 2022, 42(3): 1052-1060.
LIU H, WANG Y N, LI X L, et al.Prediction of NOx emissions of coal-fired power plants based on mutual information-graph convolutional neural network[J]. Proceedings of the CSEE, 2022, 42(3): 1052-1060.
PDF(2857 KB)

Accesses

Citation

Detail

Sections
Recommended

/