FLUTTER SPEED ANALYSIS OF BEND-TWIST COUPLED LONG FLEXIBLE BLADE

Luo Tao, Wu Faming, Huang Jianfeng, Zhong Jie, Hua Xugang

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 90-94.

PDF(2073 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2073 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (3) : 90-94. DOI: 10.19912/j.0254-0096.tynxb.2022-1828

FLUTTER SPEED ANALYSIS OF BEND-TWIST COUPLED LONG FLEXIBLE BLADE

  • Luo Tao1, Wu Faming1,2, Huang Jianfeng1, Zhong Jie1, Hua Xugang2
Author information +
History +

Abstract

The flutter speed of bend-twist coupled blades is studied. An analytical method based on FAST_v8 and nonlinear geometrically accurate beam theory is proposed to evaluate blade flutter speed. The accuracy of the analytical method is verified based on typical section instability mechanism. Taking an 80.74 m blade as the research object, the effects of air density, the position of blade gravity, torsional frequency and flap-wise on flutter velocity are analyzed. The results show that flutter speed decreases with the increase of air density. Classical flutter can be effectively inhibited by centroid forward movement. Increasing torsional frequency can improve blade stability. It is suitable when the flap-wise frequency is between 0.2 and 0.4 Hz.

Key words

wind turbine / flutter speed / classical flutter / bend-twist coupling / blade

Cite this article

Download Citations
Luo Tao, Wu Faming, Huang Jianfeng, Zhong Jie, Hua Xugang. FLUTTER SPEED ANALYSIS OF BEND-TWIST COUPLED LONG FLEXIBLE BLADE[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 90-94 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1828

References

[1] GRIFFITH D T, ASHWILL T D.The Sandia 100-meter all-glass baseline wind turbine blade: SNL100-00[R]. Springfield, VA: Sandia National Laboratories, 2011: 1-62.
[2] 戴丽萍, 白雪峰, 王晓东, 等. 大型风力机叶片颤振边界的预测分析[J]. 工程热物理学报, 2022, 43(9): 2357-2362.
DAI L P, BAI X F, WANG X D, et al.Prediction and analysis of blade flutter boundary of large wind turbine[J]. Journal of engineering thermophysics, 2022, 43(9): 2357-2362.
[3] 黄俊东, 夏鸿建, 李德源, 等. 大型风力机柔性叶片非线性气弹模态分析[J]. 机械工程学报, 2020, 56(14): 180-187.
HUANG J D, XIA H J, LI D Y, et al.Nonlinear aeroelastic modal analysis of large wind turbine flexible blades[J]. Journal of mechanical engineering, 2020, 56(14): 180-187.
[4] 柯世堂, 陆曼曼, 吴鸿鑫, 等. 基于风洞试验15 MW风力机叶片颤振后形态与能量图谱研究[J]. 空气动力学学报, 2022, 40(4): 169-180, 168.
KE S T, LU M M, WU H X, et al.Experimental study on the post-flutter morphological chracteristics and energy dissipation of a 15 MW wind turbine blade[J]. Acta aerodynamica sinica, 2022, 40(4): 169-180, 168.
[5] LI S N, CARACOGLIA L.Surrogate Model Monte Carlo simulation for stochastic flutter analysis of wind turbine blades[J]. Journal of wind engineering and industrial aerodynamics, 2019, 188: 43-60.
[6] 黄俊东, 夏鸿建, 李德源, 等. 风力机叶片后掠结构模态与颤振特性的影响分析[J]. 太阳能学报, 2021, 42(11): 273-279.
HUANG J D, XIA H J, LI D Y, et al.Analysis of effects of modal and flutter characteristics of wind turbine blade[J]. Acta energiae solaris sinica, 2021, 42(11): 273-279.
[7] SHAKYA P, SUNNY M R, MAITI D K.Nonlinear flutter analysis of a bend-twist coupled composite wind turbine blade in time domain[J]. Composite structures, 2022, 284: 115216.
[8] ZHOU X D, HUANG K F, LI Z.Effects of bend-twist coupling on flutter limits of composite wind turbine blades[J]. Composite structures, 2018, 192: 317-326.
[9] HAYAT K, DE LECEA A G M, MORIONES C D, et al. Flutter performance of bend-twist coupled large-scale wind turbine blades[J]. Journal of sound and vibration, 2016, 370: 149-162.
[10] LEE Y J, JHAN Y T, CHUNG C H.Fluid-structure interaction of FRP wind turbine blades under aerodynamic effect[J]. Composites part B: engineering, 2012, 43(5): 2180-2191.
[11] MANWELL J F, MCGOWAN J G, ROGERS A L.Wind energy explained[M]. Hoboken City: Wiley, 2009.
[12] HANSEN M H.Aeroelastic instability problems for wind turbines[J]. Wind energy, 2007, 10(6): 551-577.
[13] MEIROVITCH L.Methods of analytical dynamics[M]. New York: McGraw-Hill Book Company, 2010.
[14] JONKMAN J M, BUHL M L Jr. Fast user's guide-updated august2005[R]. National Renewable Energy Laboratory (NREL), Golden, CO, Report No. NREL/TP-500-38230, 2005.
[15] WANG Q, SPRAGUE M A, JONKMAN J, et al.BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework[J]. Wind energy, 2017, 20(8): 1439-1462.
PDF(2073 KB)

Accesses

Citation

Detail

Sections
Recommended

/