THREE-DIMENSIONAL HEAT TRANSFER-SEEPAGE COUPLING SIMULATION OF LARGE-SCALE BURIED PIPE CLUSTER GROUND SOURCE HEAT PUMP SYSTEM

Wang Yang, Zhang Fengshou, Lu Kewen, Sun Wan

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 302-310.

PDF(3202 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3202 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 302-310. DOI: 10.19912/j.0254-0096.tynxb.2022-1859

THREE-DIMENSIONAL HEAT TRANSFER-SEEPAGE COUPLING SIMULATION OF LARGE-SCALE BURIED PIPE CLUSTER GROUND SOURCE HEAT PUMP SYSTEM

  • Wang Yang1~4, Zhang Fengshou1,2, Lu Kewen3,4, Sun Wan3,4
Author information +
History +

Abstract

To determine the influence of groundwater flow on the temperature field and heat transfer characteristics of the large-scale, multi-branch pipe cluster ground source heat pump system, a three-dimensional heat transfer-seepage coupling model considering groundwater flow and geological stratification is established based on the 880 buried pipes site of Shanghai Astronomy Museum. The model is verified through thermal response tests. The results show that groundwater flow causes temperature interference along the groundwater flow direction within the pipe clusters and between branch clusters, and the temperature interference phenomenon is relatively pronounced in the depth of 89.5-120.3 m. Groundwater flow promotes the total heat transfer of the pipe cluster and reduces the heat transfer difference between summer and winter operating conditions. The percentage increase in heat transfer is proportional to the hydraulic gradient and follows a logarithmic function. When the hydraulic gradient is greater than 0.005, the percentage increase in heat transfer tends to stabilize.

Key words

geothermal energy / ground source heat pump / groundwater seepage / large-scale pipe cluster / numerical simulation

Cite this article

Download Citations
Wang Yang, Zhang Fengshou, Lu Kewen, Sun Wan. THREE-DIMENSIONAL HEAT TRANSFER-SEEPAGE COUPLING SIMULATION OF LARGE-SCALE BURIED PIPE CLUSTER GROUND SOURCE HEAT PUMP SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 302-310 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1859

References

[1] 孙婉, 周念清, 黄坚, 等. 地源热泵系统运行换热区内外地温场变化特征分析[J]. 太阳能学报, 2017, 38(10): 2804-2810.
SUN W, ZHOU N Q, HUANG J, et al.Analysis of ground temperature field change characteristics for inside and outside heat exchange area of ground source heat pump system operation[J]. Acta energiae solaris sinica, 2017, 38(10): 2804-2810.
[2] GUO M, DIAO N R, MAN Y, et al.Research and development of the hybrid ground-coupled heat pump technology in China[J]. Renewable energy, 2016, 87: 1033-1044.
[3] ESKILSON P.Thermal analysis of heat extraction boreholes[D]. Lund: Lund University, 1987.
[4] CHIASSON A, REES S, SPITLER J.A preliminary assessment of the effects of groundwater flow on closed-loop ground source systems[J]. ASHRAE transactions, 2000, 106(1): 380-393.
[5] DIAO N R, LI Q Y, FANG Z H.Heat transfer in ground heat exchangers with groundwater advection[J]. International journal of thermal sciences, 2004, 43(12): 1203-1211.
[6] 王华军, 齐承英, 杜红普, 等. 地下水渗流条件下埋地换热器传热性能的实验研究[J]. 太阳能学报, 2010, 31(12): 1610-1614.
WANG H J, QI C Y, DU H P, et al.Experimental study of heat transfer performance of borehole heat exchanger with groundwater flow[J]. Acta energiae solaris sinica, 2010, 31(12): 1610-1614.
[7] MOLINA-GIRALDO N, BAYER P, BLUM P.Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions[J]. International journal of thermal sciences, 2011, 50(7): 1223-1231.
[8] 范蕊, 马最良. 地下水流动对地下管群换热器传热的影响分析[J]. 太阳能学报, 2006, 27(11): 1155-1162.
FAN R, MA Z L.Heat transfer analysis of geothermal hear exchanger under coupled conduction and groundwater advection[J]. Acta energiae solaris sinica, 2006, 27(11): 1155-1162.
[9] FAN R, JIANG Y, YAO Y, et al.A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection[J]. Energy, 2007, 32(11): 2199-2209.
[10] 王沣浩, 余斌, 颜亮. 地下水渗流对地埋管管群传热的影响[J]. 化工学报, 2010, 61(S2): 62-67.
WANG F H, YU B, YAN L.Heat transfer analysis of groundwater seepage for multi-pipe heat exchanger of ground source heat pump[J]. CIESC journal, 2010, 61(S2): 62-67.
[11] ZANCHINI E, LAZZARI S, PRIARONE A.Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow[J]. Energy, 2012, 38(1): 66-77.
[12] 李永, 茅靳丰, 耿世彬, 等. 基于渗流有限长线热源地埋管管群换热分析与优化[J]. 太阳能学报, 2015, 36(6): 1287-1293.
LI Y, MAO J F, GENG S B, et al.Analysis and optimization of multi-boreholes based on moving finite line source model[J]. Acta energiae solaris sinica, 2015, 36(6): 1287-1293.
[13] CHOI J C, PARK J, LEE S R.Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays[J]. Renewable energy, 2013, 52: 230-240.
[14] WANG W L, LUO J, WANG G L, et al.Study of the sustainability of a ground source heat pump system by considering groundwater flow and intermittent operation strategies[J]. Energy exploration & exploitation, 2019, 37(2): 677-690.
[15] 张琳琳, 赵蕾, 杨柳. 分层土壤中竖直埋管换热器传热特性[J]. 化工学报, 2015, 66(12): 4836-4842.
ZHANG L L, ZHAO L, YANG L.Heat transfer characteristics of vertical borehole heat exchanger in stratified soils[J]. CIESC journal, 2015, 66(12): 4836-4842.
[16] 张琳邡, 张东海, 周扬, 等. 分层岩土中地埋管换热器传热解析模型与分析[J]. 太阳能学报, 2022, 43(10): 378-385.
ZHANG L F, ZHANG D H, ZHOU Y, et al.Analytical mode and analysis of heat transfer of ground heat exchangers in layered stratum[J]. Acta energiae solaris sinica, 2022, 43(10): 378-385.
[17] 邓鼎兴. 地埋管地源热泵水热耦合模拟与浅层地温能适宜性评价[D]. 武汉: 中国地质大学, 2015.
DENG D X.Thermo-hydro coupling simulation of BHE and shallow geothermal energy geological suitability assessment[D]. Wuhan: China University of Geosciences, 2015.
[18] 曾召田, 吕海波, 赵艳林, 等. 地下水渗流对竖埋管换热器传热影响的数值模拟[J]. 太阳能学报, 2015, 36(12): 3007-3014.
ZENG Z T, LYU H B, ZHAO Y L, et al.Numerical simulation of effect of groundwater seepage on vertically buried tubular heat exchanger[J]. Acta energiae solaris sinica, 2015, 36(12): 3007-3014.
[19] LI Y, HAN X, ZHANG X S, et al.Study the performance of borehole heat exchanger considering layered subsurface based on field investigations[J]. Applied thermal engineering, 2017, 126: 296-304.
[20] EROL S, FRANCOIS B.Multilayer analytical model for vertical ground heat exchanger with groundwater flow[J]. Geothermics, 2018, 71: 294-305.
[21] 张东海. 分层和渗流条件下竖直地埋管换热器传热特性研究[D]. 徐州: 中国矿业大学, 2020.
ZHANG D H.Investigation on heat transfer behavior of vertical ground heat exchangers in a layered subsurface in the presence of groundwater advection[D]. Xuzhou: China University of Mining and Technology, 2020.
[22] 金光, 弓建强, 张文娟, 等. 热渗耦合的分层土壤中管群换热器热性能分析[J]. 农业工程学报, 2021, 37(11): 213-221.
JIN G, GONG J Q, ZHANG W J, et al.Thermal performance analysis of multiple borehole heat exchangers in the heat conduction and advection coupled layered soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 213-221.
[23] 金光, 李政, 张凯, 等. 分层岩土中地埋管管群区域热效率分析[J]. 太阳能学报, 2021, 42(6): 487-492.
JIN G, LI Z, ZHANG K, et al.Analysis on regional thermal efficiency of buried pipe groups in layered rock-soils[J]. Acta energiae solaris sinica, 2021, 42(6): 487-492.
[24] 孙婉. 地下水渗流与地源热泵热量运移耦合模拟[J]. 太阳能学报, 2021, 42(5): 16-23.
SUN W.Coupling simulation of groundwater seepage and heat transfer of ground source heat pump[J]. Acta energiae solaris sinica, 2021, 42(5): 16-23.
[25] 黄献文. 分层和渗流条件下套管式地埋管长期换热演化规律及优化设计研究[D]. 淮南: 安徽理工大学, 2022.
HUANG X W.Research on long-term heat transfer evolution law and optimization design of coaxial borehole heat exchanger under stratification and seepage conditions[D]. Huainan: Anhui University of Science and Technology, 2022.
[26] 王洋, 孙婉, 高世轩, 等. 竖直地埋管换热器吸排热量比对换热区温度场影响研究[J]. 可再生能源, 2016, 34(9): 1383-1390.
WANG Y, SUN W, GAO S X, et al.Influence of the ratio of heat absorption and discharge of vertical ground heat exchanger on temperature field of the heat exchange zone[J]. Renewable energy resources, 2016, 34(9): 1383-1390.
[27] DIERSCH H J G, BAUER D, HEIDEMANN W, et al. Finite element modeling of borehole heat exchanger systems[J]. Computers & geosciences, 2011, 37(8): 1122-1135.
PDF(3202 KB)

Accesses

Citation

Detail

Sections
Recommended

/