VSG SECONDARY FREQUENCY MODULATION CONTROL STRATEGY BASED ON TRANSIENT DERIVATIVE POLARITY SECTIONAL OPTIMIZATION

Wang Xiaohuan, Liu Mingyang, Zhao Xiaojun, Jiang Wei

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 416-422.

PDF(2189 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2189 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 416-422. DOI: 10.19912/j.0254-0096.tynxb.2022-1921

VSG SECONDARY FREQUENCY MODULATION CONTROL STRATEGY BASED ON TRANSIENT DERIVATIVE POLARITY SECTIONAL OPTIMIZATION

  • Wang Xiaohuan1, Liu Mingyang1, Zhao Xiaojun1, Jiang Wei2
Author information +
History +

Abstract

Secondary frequency regulation can ensure that the power system always meets the requirements of frequency stability during the primary frequency regulation process. The grid-connected inverter using the virtual synchronous generator (VSG) control strategy only has the characteristics of primary frequency modulation when operating off the grid. If the output frequency of the VSG exceeds the safe operating range, the stable operation of the microgrid will be affected. Therefore, it is necessary to add a fixed integral coefficient to the active control loop to realize the secondary frequency modulation of frequency deviation-free control. However, traditional secondary frequency modulation has an inherent contradiction between recovery time and frequency oscillation. An improved VSG secondary frequency modulation strategy based on transient derivative polarity subsection optimization is proposed in this paper. This strategy divides the frequency recovery process into two stages based on the response characteristics of frequency recovery, and configures different integration coefficients for the two stages, so that the entire frequency recovery process has a faster recovery time and avoids frequency oscillations. It also provides a basis for setting the key parameters of the proposed method. Finally, the correctness and effectiveness of the improved control strategy proposed in this paper are verified by simulation and the hardware-in-the-loop platform based on HIL.

Key words

grid-connected inverter / secondary frequency modulation / virtual synchronous generator / segment optimization

Cite this article

Download Citations
Wang Xiaohuan, Liu Mingyang, Zhao Xiaojun, Jiang Wei. VSG SECONDARY FREQUENCY MODULATION CONTROL STRATEGY BASED ON TRANSIENT DERIVATIVE POLARITY SECTIONAL OPTIMIZATION[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 416-422 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1921

References

[1] 王晓寰, 骈帅华, 张纯江. 非理想电网下并网逆变器复数控制器及其控制簇研究[J]. 太阳能学报, 2019, 40(2): 538-548.
WANG X H, PIAN S H, ZHANG C J.Research on grid-connected inverter complex controller and its control cluster under non-ideal grid voltages[J]. Acta energiae solaris sinica, 2019, 40(2): 538-548.
[2] 王晓寰, 郭红强, 张纯江, 等. 基于PLL的相位扰动孤岛检测方法[J]. 太阳能学报, 2019, 40(5): 1276-1284.
WANG X H, GUO H Q, ZHANG C J, et al.Phase disturbance islanding detection method based on PLL[J]. Acta energiae solaris sinica, 2019, 40(5): 1276-1284.
[3] 王晓寰, 庆宏阳, 刘聪哲, 等. 微电网孤岛运行模式下谐波电流抑制研究[J]. 太阳能学报, 2020, 41(3): 167-176.
WANG X H, QING H Y, LIU C Z, et al.Research on harmonic current suppression in islanded mode of microgrid[J]. Acta energiae solaris sinica, 2020, 41(3): 167-176.
[4] BEVRANI H, ISE T, MIURA Y.Virtual synchronous generators: a survey and new perspectives[J]. International journal of electrical power & energy systems, 2014, 54: 244-254.
[5] ZHONG Q C, WEISS G.Synchronverters: inverters that mimic synchronous generators[J]. IEEE transactions on industrial electronics, 2011, 58(4): 1259-1267.
[6] D'ARCO S, SUUL J A, FOSSO O B. A virtual synchronous machine implementation for distributed control of power converters in SmartGrids[J]. Electric power systems research, 2015, 122: 180-197.
[7] 秦晓辉, 苏丽宁, 迟永宁, 等. 大电网中虚拟同步发电机惯量支撑与一次调频功能定位辨析[J]. 电力系统自动化, 2018, 42(9): 36-43.
QIN X H, SU L N, CHI Y N, et al.Functional orientation discrimination of inertia support and primary frequency regulation of virtual synchronous generator in large power grid[J]. Automation of electric power systems, 2018, 42(9): 36-43.
[8] 杨向真, 苏建徽, 丁明, 等. 微电网孤岛运行时的频率控制策略[J]. 电网技术, 2010, 34(1): 164-168.
YANG X Z, SU J H, DING M, et al.Research on frequency control for microgrid in islanded operation[J]. Power system technology, 2010, 34(1): 164-168.
[9] 李斌, 周林, 余希瑞, 等. 基于改进虚拟同步发电机算法的微网逆变器二次调频方案[J]. 电网技术, 2017, 41(8): 2680-2687.
LI B, ZHOU L, YU X R, et al.Secondary frequency regulation for microgrid inverters based on improving virtual synchronous generator[J]. Power system technology, 2017, 41(8): 2680-2687.
[10] JIANG K, SU H S, LIN H J, et al.A practical secondary frequency control strategy for virtual synchronous generator[J]. IEEE transactions on smart grid, 2020, 11(3): 2734-2736.
[11] 涂春鸣, 杨义, 兰征, 等. 含多虚拟同步发电机的微电网二次调频策略[J]. 电工技术学报, 2018, 33(10): 2186-2195.
TU C M, YANG Y, LAN Z, et al.Secondary frequency regulation strategy in microgrid based on VSG[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2186-2195.
[12] MENG J H, WANG Y, FU C, et al.Adaptive virtual inertia control of distributed generator for dynamic frequency support in microgrid[C]//2016 IEEE Energy Conversion Congress and Exposition (ECCE). Milwaukee, WI, USA, 2016: 1-5.
[13] ANDALIB-BIN-KARIM C, LIANG X D, ZHANG H G. Fuzzy-secondary-controller-based virtual synchronous generator control scheme for interfacing inverters of renewable distributed generation in microgrids[J]. IEEE transactions on industry applications, 2018, 54(2): 1047-1061.
PDF(2189 KB)

Accesses

Citation

Detail

Sections
Recommended

/