SENSITIVITY FACTOR ANALYSIS ON INITIAL DAMAGE OF WIND TURBINE BLADE SPAR BASED ON GSA

Sun Ning, Zhou Bo, Zheng Haocheng, Li Hui

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 181-189.

PDF(2342 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2342 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 181-189. DOI: 10.19912/j.0254-0096.tynxb.2022-1929

SENSITIVITY FACTOR ANALYSIS ON INITIAL DAMAGE OF WIND TURBINE BLADE SPAR BASED ON GSA

  • Sun Ning1, Zhou Bo1,2, Zheng Haocheng1, Li Hui3
Author information +
History +

Abstract

Aiming at the issue of uncertainty in the initial damage evolution of wind turbine blade spars with wrinkle defects, Gaussian probability distribution function is used to determine the distribution information of seven factors. The stress data of wrinkle defects under tensile loading is used to improve Sobol's algorithm through Latin hypercube sampling, which enables the acquisition of sample points and the training of a BP neural network. The relative entropy of strain residual energy density at maximum and non-maximum damage sites is calculated using Kullback-Leibler divergence. These values serve as sensitivity response indexes for matrix cracking and fiber fracture, respectively. The results show that loading amplitude is the most sensitive factor for both matrix damage and fiber fracture, followed by fiber content, matrix-to-fiber modulus ratio, and wrinkle height-to-width ratio. However, the order of the matrix-to-fiber modulus ratio and wrinkle height-to-width ratio is different. The related result shows that the blade spar's material properties and the defect feature's appearance have different effects on the initial damage mode. Finally, the finite element model of GFPR laminate with wrinkle is established. The simulation results verify the accuracy of the global sensitivity analysis method.

Key words

wind turbine blades / fatigue damage / sensitivity analysis / KL divergence / neural network

Cite this article

Download Citations
Sun Ning, Zhou Bo, Zheng Haocheng, Li Hui. SENSITIVITY FACTOR ANALYSIS ON INITIAL DAMAGE OF WIND TURBINE BLADE SPAR BASED ON GSA[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 181-189 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1929

References

[1] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[2] 安宗文, 马军霞, 马强, 等. 风电叶片全尺寸疲劳试验加载方法研究[J]. 太阳能学报, 2021, 42(10): 250-257.
AN Z W, MA J X, MA Q, et al.Study on loading scheme for full-scale fatigue test of wind turbine blades[J]. Acta energiae solaris sinica, 2021, 42(10): 250-257.
[3] 王同光, 李慧, 陈程, 等. 风力机叶片结构设计[M]. 北京: 科学出版社, 2015.
WANG T G, LI H, CHEN C, et al.Structure design for wind turbine blades[M]. Beijing: Science Press, 2015.
[4] ZHANG J H, LIU Y Q, TIAN D, et al.Optimal power dispatch in wind farm based on reduced blade damage and generator losses[J]. Renewable and sustainable energy reviews, 2015, 44: 64-77.
[5] BRUNBAUER J, PINTER G.Effects of mean stress and fibre volume content on the fatigue-induced damage mechanisms in CFRP[J]. International journal of fatigue, 2015, 75: 28-38.
[6] 朱文墨, 李刚, 杨小平, 等. 连续纤维增强树脂复合材料纵向压缩强度预测模型的发展及其影响因素[J]. 复合材料学报, 2020, 37(1): 1-15.
ZHU W M, LI G, YANG X P, et al.Development of prediction model and influencing factors of longitudinal compressive strength for continuous fiber reinforced polymer composites[J]. Acta materiae compositae sinica, 2020, 37(1): 1-15.
[7] MUKHOPADHYAY S, JONES M I, HALLETT S R.Tensile failure of laminates containing an embedded wrinkle; numerical and experimental study[J]. Composites part A: applied science and manufacturing, 2015, 77: 219-228.
[8] 陆媚, 胡祎乐, 余音. 复合材料双波纹面外褶皱缺陷细观力学分析方法[J]. 复合材料学报, 2023, 40(2): 1129-1141.
LU M, HU Y L, YU Y.Micro-mechanics analytical method for composite out-of-plane wrinkle with double fiber-waviness[J]. Acta materiae compositae sinica, 2023, 40(2): 1129-1141.
[9] 陈一凡, 张根保, 冉琰, 等. 面向元动作的机械传动系统可靠性分配方法[J]. 中国机械工程, 2021, 32(17): 2032-2039.
CHEN Y F, ZHANG G B, RAN Y, et al.Meta-action-oriented reliability allocation method of mechanical transmission systems[J]. China mechanical engineering, 2021, 32(17): 2032-2039.
[10] ZHAO Z, XU L A, GAO J M, et al.Multi-objective optimization of parameters of channels with staggered frustum of a cone based on response surface methodology[J]. Energies, 2022, 15(3): 1240.
[11] CABRERA J M, RAJPUT A, IQBAL M A, et al.Performance of various thin concrete slabs under projectile impact: Sobol's sensitivity analysis with aid of metamodels[J]. Thin-walled structures, 2022, 172: 108739.
[12] 张峰峰, 张欣, 陈龙, 等. 采用改进遗传算法优化神经网络的双目相机标定[J]. 中国机械工程, 2021, 32(12): 1423-1431.
ZHANG F F, ZHANG X, CHEN L, et al.Binocular camera calibration based on BP neural network optimized by improved genetic algorithm[J]. China mechanical engineering, 2021, 32(12): 1423-1431.
[13] MISHNAEVSKY L.Repair of wind turbine blades: review of methods and related computational mechanics problems[J]. Renewable energy, 2019, 140: 828-839.
[14] 申川川. 纤维增强复合板缺陷响应特征及其在光-力学检测中的应用[D]. 杭州: 浙江大学, 2021.
SHEN C C.Research on response characteristics of defects in fiber reinforced composite plates and its application in optics-mechanics detection[D]. Hangzhou: Zhejiang University, 2021.
[15] 钱若力, 穆晓光, 王轩, 等. 含褶皱缺陷玻璃纤维增强复合材料层合板拉伸渐进失效分析[J]. 复合材料科学与工程, 2020(7): 13-19, 52.
QIAN R L, MU X G, WANG X, et al.Progressive failure analysis of tensile strength of glass fiber reinforced composite laminates with wrinkle defects[J]. Composites science and engineering, 2020(7): 13-19, 52.
[16] 沈浩杰. 复合材料多向损伤理论与试验验证[D]. 南京: 南京航空航天大学, 2016.
SHEN H J.Multidirectional damage theory of composite laminates with experimental verification[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
[17] TEIXEIRA R, O'CONNOR A, NOGAL M. Probabilistic sensitivity analysis of offshore wind turbines using a transformed Kullback-Leibler divergence[J]. Structural safety, 2019, 81: 101860.
[18] 张禹, 李东升, 董小野, 等. 基于改进BP神经网络面向STEP-NC 2.5D制造特征的智能宏观工艺规划[J]. 机械工程学报, 2020, 56(1): 148-156.
ZHANG Y, LI D S, DONG X Y, et al.The intelligent macro-process planning based on an improved BP neural network for STEP-NC 2.5D manufacturing features[J]. Journal of mechanical engineering, 2020, 56(1): 148-156.
[19] 杨震, 陈翔燕, 刘诚, 等. 一种基于BP神经网络的太阳能-土壤源热泵复合系统供暖策略仿真[J]. 太阳能学报, 2022, 43(8): 224-229.
YANG Z, CHEN X Y, LIU C, et al.Simulation on a heating strategy based on BP neural network of solar-ground source heat pump composite system[J]. Acta energiae solaris sinica, 2022, 43(8): 224-229.
[20] GLOROT X, BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[J]. Journal of machine learning research, 2010, 9: 249-256.
[21] 王涛, 李勐, 孟丽岩, 等. 统计容积卡尔曼滤波器的混合试验模型更新方法[J]. 振动与冲击, 2022, 41(11): 72-82, 155.
WANG T, LI M, MENG L Y, et al.Hybrid Test model updating method based on statistical cubature Kalman filter[J]. Journal of vibration and shock, 2022, 41(11): 72-82, 155.
[22] 谢恩, 马义中, 刘丽君, 等. 数据污染情形下的全局灵敏度分析[J]. 计算机集成制造系统, 2022, 28(9): 2927-2938.
XIE E, MA Y Z, LIU L J, et al.Global sensitivity analysis under data contamination[J]. Computer integrated manufacturing systems, 2022, 28(9): 2927-2938.
PDF(2342 KB)

Accesses

Citation

Detail

Sections
Recommended

/