ADAPTIVE FILTERING ALGORITHM AND SENSORLESS CONTROL FOR WIND POWER SMOOTHING WITH FLYWHEEL ENERGY STORAGE PARTICIPATION

Zheng Shunhe, Meng Keqilao, Zhang Jiangong, Liang Kaibiao

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 347-355.

PDF(2388 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2388 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 347-355. DOI: 10.19912/j.0254-0096.tynxb.2022-1940

ADAPTIVE FILTERING ALGORITHM AND SENSORLESS CONTROL FOR WIND POWER SMOOTHING WITH FLYWHEEL ENERGY STORAGE PARTICIPATION

  • Zheng Shunhe1, Meng Keqilao1~3, Zhang Jiangong4, Liang Kaibiao4
Author information +
History +

Abstract

Through the analysis of the operational characteristics of the wind power system and the flywheel energy storage system, a sensorless control strategy based on adaptive nonsingular fast terminal sliding mode observer is proposed to address the specific problem of difficult installation of position sensors for the flywheel rotor. This strategy improves the accuracy of rotor position estimation. Furthermore, to tackle the issue of lagging reference power commands in the flywheel energy storage system, an adaptive filtering algorithm is introduced as the power reference for the flywheel energy control system, building upon the sensorless control approach, in order to reduce the lagging phenomenon of power commands. Experimental verification is conducted using the Typhoon HIL 602+ simulation platform, and the results demonstrate that the flywheel energy storage system exhibits good operational performance, the observer possesses superior estimation capability, and it can meet the control requirements of rapid charge and discharge of the flywheel while effectively smoothing wind power fluctuations, thereby enhancing energy storage utilization.

Key words

wind power / sensorless control / adaptive algorithms / flywheel energy storage / smoothing algorithm

Cite this article

Download Citations
Zheng Shunhe, Meng Keqilao, Zhang Jiangong, Liang Kaibiao. ADAPTIVE FILTERING ALGORITHM AND SENSORLESS CONTROL FOR WIND POWER SMOOTHING WITH FLYWHEEL ENERGY STORAGE PARTICIPATION[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 347-355 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1940

References

[1] 姚良忠, 朱凌志, 周明, 等. 高比例可再生能源电力系统的协同优化运行技术展望[J]. 电力系统自动化, 2017, 41(9): 36-43.
YAO L Z, ZHU L Z, ZHOU M, et al.Prospects of coordination and optimization for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 36-43.
[2] 韩杏宁, 黎嘉明, 文劲宇, 等. 风电功率状态的时域概率特性研究[J]. 电力系统保护与控制, 2016, 44(14): 31-39.
HAN X N, LI J M, WEN J Y, et al.Research on the time domain probabilistic characteristics of wind power state[J]. Power system protection and control, 2016, 44(14): 31-39.
[3] 陈玉龙, 武鑫, 滕伟, 等. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608.
CHEN Y L, WU X, TENG W, et al.Power coordinated control strategy of flywheel energy storage array for wind power smoothing[J]. Energy storage science and technology, 2022, 11(2): 600-608.
[4] 王桂松, 肖碧涛, 赖晓路, 等. 计及风功率波动和电池荷电状态的储能系统平滑控制策略[J]. 太阳能学报, 2021, 42(11): 280-286.
WANG G S, XIAO B T, LAI X L, et al.Smoothing control strategy of energy storage system considering wind power fluctuations and battery SOC[J]. Acta energiae solaris sinica, 2021, 42(11): 280-286.
[5] 朱瑛, 高云波, 臧海祥, 等. 风电机组输出功率平滑技术综述[J]. 电力系统自动化, 2018, 42(18): 182-191.
ZHU Y, GAO Y B, ZANG H X, et al.Review of output power smoothing technologies for wind turbine[J]. Automation of electric power systems, 2018, 42(18): 182-191.
[6] CHOUDHURY S.Flywheel energy storage systems: a critical review on technologies, applications, and future prospects[J]. International transactions on electrical energy systems, 2021, 31(9): e13024.
[7] LAMSAL D, SREERAM V, MISHRA Y, et al.Output power smoothing control approaches for wind and photovoltaic generation systems: a review[J]. Renewable and sustainable energy reviews, 2019, 113: 109245.
[8] LI J H, MA Y B, MU G, et al.Optimal configuration of energy storage system coordinating wind turbine to participate power system primary frequency regulation[J]. Energies, 2018, 11(6): 1396.
[9] 周皓, 李军徽, 葛长兴, 等. 改善风电并网电能质量的飞轮储能系统能量管理系统设计[J]. 太阳能学报, 2021, 42(3): 105-113.
ZHOU H, LI J H, GE C X, et al.Research on improving power quality of wind power system based on energy management system of flywheel energy storage system[J]. Acta energiae solaris sinica, 2021, 42(3): 105-113.
[10] DÍAZ-GONZÁLEZ F, BIANCHI F D, SUMPER A, et al. Control of a flywheel energy storage system for power smoothing in wind power plants[J]. IEEE transactions on energy conversion, 2014, 29(1): 204-214.
[11] ZHAO H R, WU Q W, HU S J, et al.Review of energy storage system for wind power integration support[J]. Applied energy, 2015, 137: 545-553.
[12] 谢涛, 曹军威, 高田, 等. 基于滑动最小二乘算法和电池荷电状态的储能系统平滑控制策略[J]. 电力系统保护与控制, 2015, 43(5): 1-7.
XIE T, CAO J W, GAO T, et al.An energy storage system smoothing control strategy based on sliding least square algorithm and battery SOC[J]. Power system protection and control, 2015, 43(5): 1-7.
[13] 李征, 陈佳瑜, 石坤. 风电功率波动频率域分析及储能平滑功率算法优化[J]. 太阳能学报, 2020, 41(4): 184-193.
LI Z, CHEN J Y, SHI K.Frequency domain analysis of wind power fluctuation and control strategy optimization of power smoothing[J]. Acta energiae solaris sinica, 2020, 41(4): 184-193.
[14] 张文元. 基于递推最小二乘离散辨识法的飞轮储能系统无位置控制方法[J]. 电力系统保护与控制, 2018, 46(18): 135-141.
ZHANG W Y.Research on FESS sensorless control based on recursive least-squares discrete identification[J]. Power system protection and control, 2018, 46(18): 135-141.
[15] 胡雪松, 孙才新, 刘刃, 等. 采用飞轮储能的永磁直驱风电机组有功平滑控制策略[J]. 电力系统自动化, 2010, 34(13): 79-83.
HU X S, SUN C X, LIU R, et al.An active power smoothing strategy for direct-driven permanent magnet synchronous generator based wind turbine using flywheel energy storage[J]. Automation of electric power systems, 2010, 34(13): 79-83.
[16] 梅柏杉, 张海, 崔韬, 等. 飞轮储能对永磁直驱风电机组并网有功功率的平滑控制策略研究[J]. 化工自动化及仪表, 2013, 40(2): 150-153, 232.
MEI B S, ZHANG H, CUI T, et al.Research on active power smoothing control strategy of flywheel energy storage for direct-driven permanent magnet wind turbine grid[J]. Control and instruments in chemical industry, 2013, 40(2): 150-153, 232.
[17] 施啸寒, 赵雅文, 张恒旭, 等. 基于准零相位滤波器的电池储能系统平滑风电波动控制方法[J]. 电力系统自动化, 2021, 45(4): 45-53.
SHI X H, ZHAO Y W, ZHANG H X, et al.Control method of wind power fluctuation smoothing for battery energy storage system based on quasi-zero phase filter[J]. Automation of electric power systems, 2021, 45(4): 45-53.
[18] 熊倩, 廖勇, 姚骏. 含飞轮储能单元的直驱永磁风力发电系统有功功率平滑控制[J]. 电力自动化设备, 2013, 33(5): 97-105.
XIONG Q, LIAO Y, YAO J.Active power smoothing control of direct-driven permanent magnet synchronous wind power generation system with flywheel energy storage unit[J]. Electric power automation equipment, 2013, 33(5): 97-105.
[19] HOCINE L, MENAA M, YAZID K.Sensorless control of flywheel energy storage system with an extended complex Kalman filter for wind application[C]//2020 International Conference on Control, Automation and Diagnosis (ICCAD). Paris, France, 2020: 1-6.
[20] 刘文军, 周龙, 唐西胜, 等. 基于改进型滑模观测器的飞轮储能系统控制方法[J]. 中国电机工程学报, 2014, 34(1): 71-78.
LIU W J, ZHOU L, TANG X S, et al.Research on FESS control based on the improved sliding-mode observer[J]. Proceedings of the CSEE, 2014, 34(1): 71-78.
[21] 申永鹏, 刘安康, 崔光照, 等. 扩展滑模观测器永磁同步电机无传感器矢量控制[J]. 电机与控制学报, 2020, 24(8): 51-57, 66.
SHEN Y P, LIU A K, CUI G Z, et al.Sensorless filed oriented control of permanent magnet synchronous motor based on extend sliding mode observer[J]. Electric machines and control, 2020, 24(8): 51-57, 66.
[22] JIA Y, WU Z K, ZHANG J H, et al.Control strategy of flywheel energy storage system based on primary frequency modulation of wind power[J]. Energies, 2022, 15(5): 1850.
[23] SAKAMOTO R, SENJYU T, KINJO T, et al.Output power leveling of wind turbine generator for all operating regions by pitch angle control[C]//IEEE Power Engineering Society General Meeting. San Francisco, CA, USA, 2005: 45-52.
PDF(2388 KB)

Accesses

Citation

Detail

Sections
Recommended

/