CFD MODEL OF WIND FIELD IN TYPICAL COMPLEX TERRAIN CONSIDERING ATMOSPHERIC STABILITY

Sun Zhuang, Li Shumin, Zhu Rong, Zheng Dan, Liu Weiyi, Gao Jianyong

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 197-205.

PDF(2425 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2425 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 197-205. DOI: 10.19912/j.0254-0096.tynxb.2022-1944

CFD MODEL OF WIND FIELD IN TYPICAL COMPLEX TERRAIN CONSIDERING ATMOSPHERIC STABILITY

  • Sun Zhuang1, Li Shumin1, Zhu Rong2, Zheng Dan1, Liu Weiyi1, Gao Jianyong1
Author information +
History +

Abstract

In order to evaluate and use efficiently the wind resources of the typical complex terrain, combined with the Reynolds average k-ε equation model, the y0 type wall function and the thermal buoyancy, an atmospheric CFD model is proposed, which can simulate wind field characteristics with the unstable, neutral and stable atmospheric stability. The effect of the turbulence parameters and atmospheric roughness on the wind velocity profile is studied as well. Two ways are applied to drive the CFD model: one way is to drive the CFD model by using the tested wind speed profile upstream of the inflow stream, and another way is to drive the CFD model by using the output wind speed profile and temperature profile of the WRF (Weather Research and Forecasting Mode) model. The CFD model is verified by using the wind test data of the South Huashan hills in Shanxi Shenchi. The effect of thermal buoyancy on the wind field is studied by the WRF-CFD coupling simulation, and the simulation accuracy of the atmospheric CFD model under different thermal buoyancy is compared in detail. The results show that the atmospheric CFD model can accurately simulate the atmospheric wind environment in the mountain area under different stability conditions, but the simulation wind profile on the leeward side of the hills is a little poor when considering the unstable state.

Key words

wind power / wind farm / atmospheric boundary layer / complex terrain / atmospheric CFD model / wind profile / atmosphere stability

Cite this article

Download Citations
Sun Zhuang, Li Shumin, Zhu Rong, Zheng Dan, Liu Weiyi, Gao Jianyong. CFD MODEL OF WIND FIELD IN TYPICAL COMPLEX TERRAIN CONSIDERING ATMOSPHERIC STABILITY[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 197-205 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1944

References

[1] 习近平. 高举中国特色社会主义伟大旗帜为全面建设社会主义现代化国家而团结奋斗: 在中国共产党第二十次全国代表大会上的报告[N]. 人民日报, 2022-10-26(1).
XI J P. Hold high the great banner of socialism with Chinese characteristics and strive in unity to build a modern socialist country in all respects: report to the 20th National Congress of the Communist Party of China[N]. People's daily, 2022-10-26(1).
[2] 兰忠成. 中国风能资源的地理分布及风电开发利用初步评价[D]. 兰州: 兰州大学, 2015.
LAN Z C.Preliminary evaluation on the geographic distribution of wind energy resources and its development and utilization in China[D]. Lanzhou: Lanzhou University, 2015.
[3] 宋婧. 我国风力资源分布及风电规划研究[D]. 北京: 华北电力大学, 2013.
SONG J.Study on the wind resource distribution and wind power pianning in China[D]. Beijing: North China Electric Power University, 2013.
[4] 李良县, 任腊春. 高海拔山地风电场风能资源分析与微观选址[J]. 中国水利水电科学研究院学报, 2014, 12(4): 427-430, 436.
LI L X, REN L C.Wind resource analysis and micro-sitting for high altitude mountain wind farm[J]. Journal of China Institute of Water Resources and Hydropower Research, 2014, 12(4):427-430, 436.
[5] 王美琳, 罗勇, 周荣卫. WindSim软件在复杂地形风电场风能资源评估中的应用[J]. 气象, 2010, 36(2):113-119.
WANG M L, LUO Y, ZHOU R W.Application of WindSim to wind energy resource assessment of complex terrain in China[J]. Meteorological monthly, 2010, 36(2): 113-119.
[6] 方艳莹, 徐海明, 朱蓉, 等. 基于WRF和CFD软件结合的风能资源数值模拟试验研究[J]. 气象, 2012, 38(11): 1378-1389.
FANG Y Y, XU H M, ZHU R, et al.Study on numerical simulation of wind energy resources based on WRF and CFD models[J]. Meteorological monthly, 2012, 38(11): 1378-1389.
[7] RICHARDS P J, HOXEY R P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model[J]. Journal of wind engineering and industrial aerodynamics, 1993, 46/47: 145-153.
[8] HARGREAVES D M, WRIGHT N G.On the use of the k-ε model in commercial CFD software to model the neutral atmospheric boundary layer[J]. Journal of wind engineering and industrial aerodynamics, 2007, 95(5): 355-369.
[9] YANG Y, GU M, CHEN S Q, et al.New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering[J]. Journal of wind engineering and industrial aerodynamics, 2009, 97(2):88-95.
[10] ZHANG X D.CFD simulation of neutral ABL flows[R]. Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, 2009.
[11] 遆子龙, 李永乐, 廖海黎. 地表粗糙度对山区峡谷地形桥址区风场影响研究[J]. 工程力学, 2017, 34(6): 73-81.
TI Z L, LI Y L, LIAO H L.Effect of ground surface roughness on wind field over bridge site with a gorge in mountainous area[J]. Engineering mechanics, 2017, 34(6): 73-81.
[12] KOBLITZ T.CFD modeling of non-neutral atmospheric boundary layer conditions[D]. Copenhagen: Technical University of Denmark, 2013.
[13] ANDREAS B.WAsP CFD-a new beginning in wind resource assessment[EB/OL]. https://www.wasp.dk/software/wasp-cfd.
[14] FRANCE M, FRANCE C. A new turbulence model for the stable boundary layer with application to CFD in wind resource assessment[R]. METEODYN, 2015, https://meteodyn.fr/ media/ a_ new_ turbulence_ model_ for_ the_ stable _boundary_layer_ewea2015.pdf.
[15] 程雪玲, 胡非, 曾庆存. 复杂地形风场的精细数值模拟[J]. 气候与环境研究, 2015, 20(1): 1-10.
CHENG X L, HU F, ZENG Q C.Refined numerical simulation of complex terrain flow field[J]. Climatic and environmental research, 2015, 20(1): 1-10.
[16] 李军, 宋晓萍, 程雪玲, 等. 从天气尺度到风力机尺度大气运动的动力模拟[J]. 太阳能学报, 2015, 36(4): 806-811.
LI J, SONG X P, CHENG X L, et al.Dynamical simulation of wind flow from synoptic scale to turbine scale[J]. Acta energiae solaris sinica, 2015, 36(4): 806-811.
[17] 杨易, 谭健成, 金博崇, 等. 基于WRF与CFD的复杂地形风场多尺度耦合模拟分析[J]. 华南理工大学学报(自然科学版), 2021, 49(5): 65-73, 83.
YANG Y, TAN J C, JIN B C, et al.Multi-scale simulation on the wind field for complex terrain based on coupled WRF and CFD techniques[J]. Journal of South China University of Technology(natural science edition), 2021, 49(5): 65-73, 83.
[18] BLOCKEN B.50 years of computational wind engineering:past, present and future[J]. Journal of wind engineering and industrial aerodynamics, 2014, 129: 69-102.
[19] RICHARDS P J, NORRIS S E.Appropriate boundary conditions for computational wind engineering: Still an issue after 25 years[J]. Journal of wind engineering and industrial aerodynamics, 2019, 190: 245-255.
[20] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 2版. 北京: 北京大学出版社, 2013.
SHENG P X, MAO J T, LI J G, et al.Atmospheric physics[M]. 2nd ed. Beijing: Peking University Press, 2013.
[21] NIKURADSE J. Laws of flow in rough pipes[R]. National Advisory Committee for Aeronautics, 1950, https://ntrs.nasa.gov/citations/19930093938.
[22] BLOCKEN B, STATHOPOULOS T, CARMELIET J.CFD simulation of the atmospheric boundary layer:wall function problems[J]. Atmospheric environment, 2007, 41(2): 238-252.
[23] 任会来, 张晓东, 康顺. 基于平板地形的流向均匀大气边界层比较分析[J]. 可再生能源, 2018, 36(8):1244-1250.
REN H L, ZHANG X D, KANG S.Comparative study on the uniform atmospheric boundary layer in flow direction based on flat terrain[J]. Renewable energy resources, 2018, 36(8): 1244-1250.
PDF(2425 KB)

Accesses

Citation

Detail

Sections
Recommended

/