MULTI-SOURCE DOMAIN ADAPTIVE FAULT DIAGNOSIS METHOD OF WIND TURBINE GEARBOX UNDER NO-ACCESSING SOURCE DATA CONSTRAINTS

Wu Xuanyong, Huang Zhongquan, Li Qikang, Tang Baoping

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 238-246.

PDF(3547 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(3547 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 238-246. DOI: 10.19912/j.0254-0096.tynxb.2022-1953

MULTI-SOURCE DOMAIN ADAPTIVE FAULT DIAGNOSIS METHOD OF WIND TURBINE GEARBOX UNDER NO-ACCESSING SOURCE DATA CONSTRAINTS

  • Wu Xuanyong, Huang Zhongquan, Li Qikang, Tang Baoping
Author information +
History +

Abstract

In the context of data privacy and security, domain adaptive methods is unavailable due to inaccessibility of source domain data. A multi-source domain adaptive fault diagnosis method under no-accessing source data constraints is proposed. Firstly, the source and target domain data are aligned in the feature space by information maximization loss. Then the feature representation information of the target domain data is further mined using the self-supervised pseudo-label strategy, and the influence of noise pseudo-labels is suppressed using the entropy filtering strategy. Finally, the knowledge of multiple source domains is effectively utilized and the influence of negative transfer is suppressed to realize the fault diagnosis of wind turbine gearbox under no-accessing source data constraints through adaptive weighting. This method is applied and verified using the drivetrain dynamic simulator test bench data and the wind turbine CMS data of a wind farm. The results show that the proposed method can effectively realize the fault diagnosis of wind turbine gearbox in the target domain using only the pre-trained source domain model and the unlabeled data of the target domain.

Key words

wind turbines / data privacy / adaptive algorithms / no-accessing source data constrains / gearbox / fault diagnosis

Cite this article

Download Citations
Wu Xuanyong, Huang Zhongquan, Li Qikang, Tang Baoping. MULTI-SOURCE DOMAIN ADAPTIVE FAULT DIAGNOSIS METHOD OF WIND TURBINE GEARBOX UNDER NO-ACCESSING SOURCE DATA CONSTRAINTS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 238-246 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1953

References

[1] 曾军, 陈艳峰, 杨苹, 等. 大型风力发电机组故障诊断综述[J]. 电网技术, 2018, 42(3): 849-860.
ZENG J, CHEN Y F, YANG P, et al.Review of fault diagnosis methods of large-scale wind turbines[J]. Power system technology, 2018, 42(3): 849-860.
[2] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[3] JIANG G Q, HE H B, YAN J, et al.Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J]. IEEE transactions on industrial electronics, 2019, 66(4): 3196-3207.
[4] LEI J H, LIU C, JIANG D X.Fault diagnosis of wind turbine based on long short-term memory networks[J]. Renewable energy, 2019, 133: 422-432.
[5] YU X X, TANG B P, ZHANG K.Fault diagnosis of wind turbine gearbox using a novel method of fast deep graph convolutional networks[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 6502714.
[6] LI Q K, TANG B P, DENG L, et al.Deep balanced domain adaptation neural networks for fault diagnosis of planetary gearboxes with limited labeled data[J]. Measurement, 2020, 156: 107570.
[7] WEI D D, HAN T, CHU F L, et al.Weighted domain adaptation networks for machinery fault diagnosis[J]. Mechanical systems and signal processing, 2021, 158: 107744.
[8] GUO J W, WU J P, ZHANG S H, et al.Generative transfer learning for intelligent fault diagnosis of the wind turbine gearbox[J]. Sensors, 2020, 20(5): 1361.
[9] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[10] LU N N, XIAO H H, SUN Y J, et al.A new method for intelligent fault diagnosis of machines based on unsupervised domain adaptation[J]. Neurocomputing, 2021, 427: 96-109.
[11] 郭亮, 董勋, 高宏力, 等. 无标签数据下基于特征知识迁移的机械设备智能故障诊断[J]. 仪器仪表学报, 2019, 40(8): 58-64.
GUO L, DONG X, GAO H L, et al.Feature knowledge transfer based intelligent fault diagnosis method of machines with unlabeled data[J]. Chinese journal of scientific instrument, 2019, 40(8): 58-64.
[12] LIANG J, HU D P, FENG J S. Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[EB/OL].2020: arXiv: 2002.08546. http://arxiv.org/abs/2002.08546.pdf
[13] GRANDVALET Y, BENGIO Y.Semi-supervised learning by entropy minimization[C]//Advances in Neural Information Processing Systems 17. Vancouver, British Columbia, Canada, 2005, 529-536.
[14] BRIDLE J, HEADING A J R, MACKAY D. Unsupervised classifiers, mutual information and ‘phantom targets'[C]//Advances in Neural Information Processing Systems 4.Denver, Colorado, USA, 1991.
[15] CARON M, BOJANOWSKI P, JOULIN A, et al.Deep clustering for unsupervised learning of visual features[C]//Computer Vision-ECCV 2018: 15th European Conference. Munich, Germany, 2018, Proceedings, Part XIV. 2018: 139-156.
[16] AHMED S M, RAYCHAUDHURI D S, PAUL S, et al.Unsupervised multi-source domain adaptation without access to source data[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA, 2021: 10098-10107.
[17] SAPORTA A, VU T H, CORD M, et al. ESL: entropy-guided self-supervised learning for domain adaptation in semantic segmentation[EB/OL].2020: arXiv: 2006.08658. http://arxiv.org/abs/2006.08658.pdf
[18] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9: 2579-2605.
PDF(3547 KB)

Accesses

Citation

Detail

Sections
Recommended

/