MULTI-TIME SCALE OPTIMIZATION SCHEDULING OF COMBINED SYSTEM OF NEW ENERGY POWER GENERATION AND PUMPED STORAGE POWER STATION BASED ON NSGA-Ⅱ SERIAL PATTERN SEARCH

Jiang Qi, Chang Yuhong, Yi Chuanbao, Chen Zhixu

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 434-441.

PDF(2164 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2164 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 434-441. DOI: 10.19912/j.0254-0096.tynxb.2022-1955

MULTI-TIME SCALE OPTIMIZATION SCHEDULING OF COMBINED SYSTEM OF NEW ENERGY POWER GENERATION AND PUMPED STORAGE POWER STATION BASED ON NSGA-Ⅱ SERIAL PATTERN SEARCH

  • Jiang Qi1, Chang Yuhong2, Yi Chuanbao2, Chen Zhixu3
Author information +
History +

Abstract

Aiming at the joint power generation system of new energy generation and pumped storage power station, a multi-time scale optimization scheduling strategy and a fast non-dominated sorting genetic algorithm with pattern search (NSGA-Ⅱ-PS) combining NSGA-Ⅱalgorithm and pattern search algorithm are proposed in this paper. The objective function and constraints are set respectively for different time scales, and the advantages and disadvantages of NSGA-Ⅱand NSGA-Ⅱ-PS algorithm in solving the scheduling problem are compared. Optimize the scheduling of the joint system on the day-ahead and intra-day time scales, and make scheduling plans. The results show that the multi-time scale optimization scheduling of the combined system of new energy generation and pumped storage can be realized on the basis of high proportion of new energy consumption in the day-ahead and intra-day scale, and the economic and safe operation of the combined system can be realized.

Key words

new energy / pumped storage power plants / multiobjective optimization / scheduling / fast non-dominated genetic algorithm

Cite this article

Download Citations
Jiang Qi, Chang Yuhong, Yi Chuanbao, Chen Zhixu. MULTI-TIME SCALE OPTIMIZATION SCHEDULING OF COMBINED SYSTEM OF NEW ENERGY POWER GENERATION AND PUMPED STORAGE POWER STATION BASED ON NSGA-Ⅱ SERIAL PATTERN SEARCH[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 434-441 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1955

References

[1] 谢国辉, 栾凤奎, 李娜娜, 等. 新能源消纳影响因素的贡献度评估模型[J]. 中国电力, 2018, 51(11): 125-131.
XIE G H, LUAN F K, LI N N, et al.Contribution evaluating model for the new energy accommodation influencing factors[J]. Electric power, 2018, 51(11): 125-131.
[2] 单葆国, 冀星沛, 许传龙, 等. 近期全球能源供需形势分析及中国能源电力保供策略[J]. 中国电力, 2022, 55(10): 1-13.
SHAN B G, JI X P, XU C L, et al.Recent situation of global energy supply-demand and guarantee strategy of China's energy and power supply[J]. Electric power, 2022, 55(10): 1-13.
[3] 周强, 汪宁渤, 冉亮, 等. 中国新能源弃风弃光原因分析及前景探究[J]. 中国电力, 2016, 49(9): 7-12, 159.
ZHOU Q, WANG N B, RAN L, et al.Cause analysis on wind and photovoltaic energy curtailment and prospect research in China[J]. Electric power, 2016, 49(9): 7-12, 159.
[4] 王敏骁, 苏娟, 梁琛. 西北大规模新能源消纳问题成因分析及综合应对策略研究[J]. 电网与清洁能源, 2017, 33(10): 124-128.
WANG M X, SU J, LIANG C.Research on cause analysis and coping strategies on consumption of large scale renewable in Northwest China[J]. Power system and clean energy, 2017, 33(10): 124-128.
[5] 高雷, 苏辛一, 刘世宇. 可再生能源消纳责任权重下的新能源合理弃电率研究[J]. 中国电力, 2020, 53(12): 136-142.
GAO L, SU X Y, LIU S Y.Study on reasonable curtailment rate of renewables under certain renewable energy consumption quota obligation[J]. Electric power, 2020, 53(12): 136-142.
[6] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Z Y, ZHANG N, XIE X R, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of electric power systems, 2021, 45(9): 171-191.
[7] 徐筝, 孙宏斌, 郭庆来. 综合需求响应研究综述及展望[J]. 中国电机工程学报, 2018, 38(24): 7194-7205, 7446.
XU Z, SUN H B, GUO Q L.Review and prospect of integrated demand response[J]. Proceedings of the CSEE, 2018, 38(24): 7194-7205, 7446.
[8] 吕振邦, 余接永, 曹前进. 基于系统灵活性的日前高比例可再生能源消纳分析[J]. 电力需求侧管理, 2020, 22(5): 31-37.
LYU Z B, YU J Y, CAO Q J.Analysis on the accommodation of day-ahead high-penetration renewable energy based on the flexibility of the system[J]. Power demand side management, 2020, 22(5): 31-37.
[9] 王毛毛, 姚景泽, 罗清乘, 等. 基于改进蝙蝠算法的风蓄联合优化运行研究[J]. 东北电力技术, 2021, 42(3): 1-6.
WANG M M, YAO J Z, LUO Q C, et al.Research on optimal operation of hybrid wind power and pumped-storage based on modified bat algorithm[J]. Northeast electric power technology, 2021, 42(3): 1-6.
[10] 潘立刚, 陈同法, 王卿然, 等. 促进新能源消纳的风-光-抽水蓄能联合调度优化研究[J]. 电工技术, 2022(4): 76-80.
PAN L G, CHEN T F, WANG Q R, et al.Research on wind-photovoltaic-pumped storage joint scheduling optimization to promote renewable energy consumption[J]. Electric engineering, 2022(4): 76-80.
[11] 杨森, 张青, 高立艾. 风-光-抽水蓄能联合发电系统的优化运行[J]. 河北大学学报(自然科学版), 2021, 41(1): 106-112.
YANG S,ZHANG Q,GAO L A.Optimal operation of wind-light-pumped storage combined power generation system[J]. Journal of Hebei University(natural science edition), 2021, 41(1): 106-112.
[12] 李文武, 马浩云, 贺中豪, 等. 基于n步Q-learning算法的风电抽水蓄能联合系统日随机优化调度研究[J]. 水电能源科学, 2022, 40(1): 206-210.
LI W W, MA H Y, HE Z H, et al.Research on daily stochastic optimal scheduling of wind power pumped storage system based on n-step Q-learning algorithm[J]. Water resources and power, 2022, 40(1): 206-210.
[13] 刘至纯, 李华强, 王俊翔, 等. 基于多时间尺度综合需求响应策略的综合能源系统优化运行[J]. 电力建设, 2022, 43(9): 54-65.
LIU Z C, LI H Q, WANG J X, et al.Optimal operation of integrated energy system based on multi-time scale integrated demand response strategy[J]. Electric power construction, 2022, 43(9): 54-65.
[14] 赵为光, 陈泽, 吴尚阳, 等. 含光热的微能源网多时间尺度优化调度[J]. 黑龙江电力, 2022, 44(2): 119-126.
ZHAO W G, CHEN Z, WU S Y, et al.Multi-time scale optimization scheduling of micro-energy networks with photothermal[J]. Heilongjiang electric power, 2022, 44(2): 119-126.
[15] 陈长青, 李欣然, 张冰玉, 等. 基于多时间尺度的储能调峰调频协同控制策略[J]. 电力系统保护与控制, 2022, 50(5): 94-105.
CHEN C Q, LI X R, ZHANG B Y, et al.Energy storage peak and frequency modulation cooperative control strategy based on multi-time-scale[J]. Power system protection and control, 2022, 50(5): 94-105.
[16] 丁胜, 周博滔, 胡宝华. 基于NSGA-Ⅱ算法的小型分布式能源系统设计优化[J]. 太阳能学报, 2021, 42(1): 438-445.
DING S, ZHOU B T, HU B H.Design optimization of small distributed energy system based on NSGA-Ⅱ algorithm[J]. Acta energiae solaris sinica, 2021, 42(1): 438-445.
[17] 徐大明, 康龙云, 曹秉刚. 基于NSGA-Ⅱ的风光互补独立供电系统多目标优化[J]. 太阳能学报, 2006, 27(6): 593-598.
XU D M, KANG L Y, CAO B G.Stand-alone hybrid wind/PV power systems using the NSGA-Ⅱ[J]. Acta energiae solaris sinica, 2006, 27(6): 593-598.
[18] 曹阳, 温彩凤, 刘珍, 等. 基于RSM和NSGA-Ⅱ法的风电系统经济优化研究[J]. 太阳能学报, 2022, 43(1): 161-168.
CAO Y, WEN C F, LIU Z, et al.Multi-objective optimization of wind power systems based on RSM and NSGA-Ⅱ methods[J]. Acta energiae solaris sinica, 2022, 43(1): 161-168.
PDF(2164 KB)

Accesses

Citation

Detail

Sections
Recommended

/