MAXIMUM POWER POINT TRACKING OF MICROBIAL FUEL CELL BASED ON FIREFLY OPTIMIZATION FUZZY P&O

Fan Liping, Chen Qipeng

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 373-381.

PDF(1961 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1961 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (4) : 373-381. DOI: 10.19912/j.0254-0096.tynxb.2022-1959

MAXIMUM POWER POINT TRACKING OF MICROBIAL FUEL CELL BASED ON FIREFLY OPTIMIZATION FUZZY P&O

  • Fan Liping1,2, Chen Qipeng1,2
Author information +
History +

Abstract

Aiming at the problems of low power and unstable output of microbial fuel cells, a maximum power point tracking control algorithm with a mixture of firefly optimization and fuzzy modified perturb & observe(P&O) is proposed. Using the global optimization ability of dual-species firefly optimization algorithm and the logic reasoning ability of fuzzy control, more accurate control signals are generated, and the equivalent load is dynamically adjusted through a Boost converter. The results show that the maximum power point tracking algorithm based on dual species firefly optimization mixed with fuzzy modified perturb & observe can track and stabilize at the maximum power point at a faster speed, reduce the steady-state error, suppress power oscillation, enhance the anti-interference ability, and significantly improve the power generation capacity and power supply quality of microbial fuel cells.

Key words

microbial fuel cell / maximum power point tracking / fuzzy control / firefly algorithm

Cite this article

Download Citations
Fan Liping, Chen Qipeng. MAXIMUM POWER POINT TRACKING OF MICROBIAL FUEL CELL BASED ON FIREFLY OPTIMIZATION FUZZY P&O[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 373-381 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1959

References

[1] ABDALLAH M, FEROZ S, ALANI S, et al.Continuous and scalable applications of microbial fuel cells: a critical review[J]. Reviews in environmental science and bio/technology, 2019, 18(3): 543-578.
[2] VERMA J, KUMAR D, SINGH N, et al.Electricigens and microbial fuel cells for bioremediation and bioenergy production: a review[J]. Environmental chemistry letters, 2021, 19(3): 2091-2126.
[3] WU Q, JIAO S P, MA M X, et al.Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation[J]. Environmental science and pollution research, 2020, 27(7): 6749-6764.
[4] 樊立萍, 童兵. 基于BOOST变换器的MFC最大功率跟踪控制[J]. 太阳能学报, 2021, 42(2): 274-280.
FAN L P, TONG B.Maximum power tracking control of microbial fuel cell based on BOOST convertor[J]. Acta energiae solaris sinica, 2021, 42(2): 274-280.
[5] FAN L P, FENG X.Q-learning based maximum power point tracking control for microbial fuel cell[J]. International journal of electrochemical science, 2020, 15(10): 9917-9932.
[6] MOUSA H, YOUSSEF A R, MOHAMED E.Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area[J]. Renewable energy, 2020, 154: 875-893.
[7] HARRAG A, REZK H.Indirect P&O type-2 fuzzy-based adaptive step MPPT for proton exchange membrane fuel cell[J]. Neural computing and applications, 2021, 33(15): 9649-9662.
[8] TILAHUN S L, NGNOTCHOUYE J M T, HAMADNEH N N. Continuous versions of firefly algorithm: a review[J]. Artificial intelligence review, 2019, 51(3): 445-492.
[9] KUMAR V, KUMAR D.A systematic review on firefly algorithm: past, present, and future[J]. Archives of computational methods in engineering, 2021, 28(4): 3269-3291.
[10] 林涛, 赵丹阳, 严寒. 风电消纳下多型号制氢机组阵列优化调度研究[J]. 太阳能学报, 2022, 43(11): 466-473.
LIN T, ZHAO D Y, YAN H.Research on optimal scheduling of multi-model hydrogen generator array under wind power consumption[J]. Acta energiae solaris sinica, 2022, 43(11): 466-473.
[11] THEPPHAKORN T, PONGCHAROEN P.Modified and hybridised bi-objective firefly algorithms for university course scheduling[J]. Soft computing, 2023, 27(14): 9735-9772.
[12] 武新雯, 李虹, 刘立群, 等. 萤火虫算法的改进及其在光伏MPPT中的应用[J]. 太原科技大学学报, 2019, 40(3): 201-207.
WU X W, LI H, LIU L Q, et al.Improvement of firefly algorithm and its application in photovoltaic MPPT[J]. Journal of Taiyuan University of Science and Technology, 2019, 40(3): 201-207.
[13] ZENG Y Z, CHOO Y F, KIM B H, et al.Modelling and simulation of two-chamber microbial fuel cell[J]. Journal of power sources, 2010, 195(1): 79-89.
[14] FAN L P, ZHANG J, SHI X L.Performance improvement of a microbial fuel cell based on model predictive control[J]. International journal of electrochemical science, 2015, 10(1): 737-748.
[15] 樊立萍, 王会龙, 李崇. 微生物燃料电池的变论域自适应模糊控制研究[J]. 电源技术, 2016, 40(2): 313-315.
FAN L P, WANG H L, LI C.Adaptive fuzzy control based on variable universe for microbial fuel cell[J]. Chinese journal of power sources, 2016, 40(2): 313-315.
[16] FAN L, LI J J.Overviews on internal resistance and its detection of microbial fuel cells[J]. International journal of circuits, systems and signal processing, 2016, 10: 316-320.
[17] GUL H, RAZA W, LEE J, et al.Progress in microbial fuel cell technology for wastewater treatment and energy harvesting[J]. Chemosphere, 2021, 281: 130828.
[18] FAN L P, CHEN Q P, GUO Z Q.An fuzzy improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for microbial fuel cells[J]. International journal of electrochemical science, 2022, 17(11): 221157.
[19] XU G H, ZHANG T W, LAI Q.A new firefly algorithm with mean condition partial attraction[J]. Applied intelligence, 2022, 52(4): 4418-4431.
[20] REZAEI K, REZAEI H.An improved firefly algorithm for numerical optimization problems and it's application in constrained optimization[J]. Engineering with computers, 2022, 38(4): 3793-3813.
[21] 张鹏, 罗正华, 唐成达, 等. 一种基于改进萤火虫算法的光伏MPPT控制方法[J]. 哈尔滨理工大学学报, 2020, 25(3): 53-60.
ZHANG P, LUO Z H, TANG C D, et al.Photovoltaic MPPT control method based on improved firefly algorithm[J]. Journal of Harbin University of Science and Technology, 2020, 25(3): 53-60.
[22] CAO L L, BEN K R, PENG H, et al.Enhancing firefly algorithm with adaptive multi-group mechanism[J]. Applied intelligence, 2022, 52(9): 9795-9815.
[23] YU S H, ZUO X K, FAN X L, et al.An improved firefly algorithm based on personalized step strategy[J]. Computing, 2021, 103(4): 735-748.
[24] DIXIT A, MANI A, BANSAL R.An adaptive mutation strategy for differential evolution algorithm based on particle swarm optimization[J]. Evolutionary intelligence, 2022, 15(3): 1571-1585.
PDF(1961 KB)

Accesses

Citation

Detail

Sections
Recommended

/