RESEARCH PROGRESS ON TECHNOLOGY AND STANDARD OF DC HOUSEHOLD APPLIANCES IN PEDF BUILDING

Wang Chao, Jia Xiaoya, Zhao Peng, Liu Ting, Dong Sujun, Wang Jun

Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 369-379.

PDF(2219 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2219 KB)
Acta Energiae Solaris Sinica ›› 2024, Vol. 45 ›› Issue (5) : 369-379. DOI: 10.19912/j.0254-0096.tynxb.2022-1990

RESEARCH PROGRESS ON TECHNOLOGY AND STANDARD OF DC HOUSEHOLD APPLIANCES IN PEDF BUILDING

  • Wang Chao1-3, Jia Xiaoya2,3, Zhao Peng2,3, Liu Ting2,3, Dong Sujun1, Wang Jun1
Author information +
History +

Abstract

With the deepening of the energy revolution, the power terminal will also usher in new changes, DC household appliances in building “photovoltaic-energy storage-direct-flexibility(PEDF)” system have typical features-storage and use integration, DC power supply and flexible electricity consumption. This paper focuses on the technologies and standards of DC household appliances, compares the relevant standards at home and abroad. Thus, a standard system for DC household appliances was built based on the above review, the key technologies that hinder the industrialization of DC household appliances were analyzed, and the key research contents of technical standards were proposed. Conclusively, the outlook of the future research was proposed to provide reference for further in-depth research and exploration of "PEDF" DC household appliances.

Key words

household appliances / solar energy / standards / direct current(DC) / flexible energy consumption / photovoltaics, energy storage, direct current and flexibility(PEDF)

Cite this article

Download Citations
Wang Chao, Jia Xiaoya, Zhao Peng, Liu Ting, Dong Sujun, Wang Jun. RESEARCH PROGRESS ON TECHNOLOGY AND STANDARD OF DC HOUSEHOLD APPLIANCES IN PEDF BUILDING[J]. Acta Energiae Solaris Sinica. 2024, 45(5): 369-379 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1990

References

[1] 中国家用电器研究院. 国内家电行业发展报告[R]. 北京: 2021.
China Household Electric Appliance Research Institute. Domestic home appliance industry development report[R]. Beijing: 2021.
[2] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告-2020-农村住宅专题[M]. 北京: 中国建筑工业出版社, 2020: 14-15.
Tsinghua University Building Energy Conservation Research Center. Annual report on China building energy efficiency[M]. Beijing: China Architecture & Building Press, 2020: 14-15.
[3] 钱科军, 李博, 王卫卫. 用户侧柔性负荷调控实现需求响应[C]//数字中国能源互联——2018电力行业信息化年会论文集. 银川, 2018: 400-403.
[4] STIPPICH A, SEWERGIN A, ENGELMANN G, et al.From AC to DC: benefits in household appliances[C]//International ETG Congress. Bonn, Germany, 2018: 1-6.
[5] VAN WILLIGENBURG P, WOUDSTRA J, DE LANGE T, et al.First step to full DC-potential: improving energy efficiency in household equipment[C]//Twenty-Second Domestic Use of Energy. Cape Town, South Africa, 2014: 1-7.
[6] RODRIGUEZ-OTERO M A, O'NEILL-CARRILLO E. Efficient home appliances for a future DC residence[C]//2008 IEEE Energy 2030 Conference. Atlanta, GA, USA, 2009: 1-6.
[7] PAAJANEN P, KAIPIA T, PARTANEN J.DC supply of low-voltage electricity appliances in residential buildings[C]//CIRED 2009-20th International Conference and Exhibition on Electricity Distribution - Part 1. Prague, Czech Republic, 2009: 1-4.
[8] 江亿. 光储直柔:助力实现零碳电力的新型建筑配电系统[J]. 暖通空调, 2021, 51(10): 1-12.
JIANG Y.PSDF(photovoltaic, storage, DC, flexible)—a new type of building power distribution system for zero carbon power system[J]. Heating ventilating & air conditioning, 2021, 51(10): 1-12.
[9] 江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5): 1-13.
JIANG Y, HU S.Paths to carbon neutrality in China’s building sector[J]. Heating ventilating & air conditioning, 2021, 51(5): 1-13.
[10] 郝斌. 建筑“光储直柔”与零碳电力如影随形[J]. 建筑, 2021(23): 27-29.
HAO B.Building “light storage and flexibility” goes hand in hand with zero-carbon electricity[J]. Construction and architecture, 2021(23): 27-29.
[11] PLANAS E, ANDREU J, GÁRATE J I, et al. AC and DC technology in microgrids: a review[J]. Renewable and sustainable energy reviews, 2015, 43: 726-749.
[12] 刘晓华, 张涛, 刘效辰, 等. “光储直柔”建筑新型能源系统发展现状与研究展望[J]. 暖通空调, 2022, 52(8): 1-9, 82.
LIU X H, ZHANG T, LIU X C, et al.Development statuses and research prospects of PEDF (photovoltaics, energy storage, direct current and flexibility) building energy systems[J]. Heating ventilating & air conditioning, 2022, 52(8): 1-9, 82.
[13] 茆美琴, 丁勇, 王杨洋, 等. 微网:未来能源互联网系统中的“有机细胞”[J]. 电力系统自动化, 2017, 41(19): 1-11, 45.
MAO M Q, DING Y, WANG Y Y, et al.Microgrid—an “organic cell” for future energy interconnection system[J]. Automation of electric power systems, 2017, 41(19): 1-11, 45.
[14] 王怡岚, 童亦斌, 黄梅, 等. 基于需求侧响应的空调负荷虚拟储能模型研究[J]. 电网技术, 2017, 41(2): 394-401.
WANG Y L, TONG Y B, HUANG M, et al.Research on virtual energy storage model of air conditioning loads based on demand response[J]. Power system technology, 2017, 41(2): 394-401.
[15] VDE,DKE.Low voltage DC German standardization roadmap version 2[R/OL].[2022-12-08].https://www.dke.de/en/areas-of-work/energy/directcurrentinthelow-voltagerangestandardizationroadmap.
[16] Alliance of Direct Current Building. The development roadmap of direct current buildings[R]. Beijing: 2022.
[17] 王昊晴, 刘宁, 马钊, 等. 面向安全可靠用电需求的“光储直柔”直流建筑标准体系研究[J]. 供用电, 2022, 39(8): 15-20, 57.
WANG H Q, LIU N, MA Z, et al.Research on PEDF building standard system for safe and reliable power demand[J]. Distribution & utilization, 2022, 39(8): 15-20, 57.
[18] 刘阳, 滕卫军, 谷青发, 等. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1): 312-318.
LIU Y, TENG W J, GU Q F, et al.Scaled-up diversified electrochemical energy storage LCOE and its economic analysis[J]. Energy storage science and technology, 2023, 12(1): 312-318.
[19] 吴若飒. 公共建筑中蓄冷空调系统能效经济性评价与保障体系研究[D]. 北京: 清华大学, 2015.
WU R S.Balancing energy efficiency and costeffectiveness evaluation system for chiller plant with thermal storage[D]. Beijing: Tsinghua University, 2015.
[20] 王笑吟. 热电联产的热电协同模式评价与流程研究[D].北京: 清华大学, 2021.
WANG X Y.Evaluation and process research of cogeneration model[D]. Beijing: Tsinghua University,2021.
[21] 祝铭, 刘雄, 李林蔚, 等. 新型空气源热泵蓄热供暖系统经济性分析[J]. 建筑热能通风空调, 2020, 39(3): 38-42.
ZHU M, LIU X, LI L W, et al.Economic analysis of a novel air-source heat pump heating system with an energy storage tank[J]. Building energy & environment, 2020, 39(3): 38-42.
[22] DRAGIČEVIĆ T, LU X N, VASQUEZ J C, et al. DC microgrids—part II: a review of power architectures, applications, and standardization issues[J]. IEEE transactions on power electronics, 2016, 31(5): 3528-3549.
[23] 国创能源互联网创新中心(广东)有限公司. 中国光储直柔建筑战略发展路径研究: 子课题5:建筑电器直流化技术及接口标准(设备)[R/OL]. 珠海, 2022.[2022-07-01]. https://www.efchina.org/Reports-zh/report-lccp-20220701-zh.
Guochuang Energy Internet Innovation Center (Guangdong) Co. Research on the strategic development path of China's direct solar energy storage buildings-Sub-topic 5: DC technology and interface standards for building appliances (equipment)[R/OL]. Zhuhai:2022. https://www.efchina.org/Reports-zh/report-lccp-20220701-zh.
[24] IEC SYC LVDC AHG8. IEC SyC LVDC AhG8“建筑中的低压直流应用”工作速递[EB/OL]:2022.[2022-08-09].http://www.seari.com.cn/index.php/dky/News/show/id/1528.html.
IEC SYC LVDC AHG8.Work express on “low voltage DC applications in buildings”[EB/OL]:2022.[2022-08-09]http://www.seari.com.cn/index.php/dky/News/show/id/1528.html.
[25] International Electrotechnical Commission Systems Evaluation Group 4. Technology report LVDC:electricity for the 21st century[R/OL].[2017-09-05]https://www.iec.ch/basecamp/lvdc-electricity-21st-century.
[26] ETSI EN 300 132-3-1,Power supply interface at the input to data/telecom equipment Subpart 1 of Part 3:Direct current source up to 400 V[S].
[27] 闫凌. 家用电器三维标准体系参考模型研究[J]. 家电科技, 2020(3): 104-106.
YAN L.Research on the reference model of three-dimensional standard system for household electrical appliances[J]. Journal of appliance science & technology, 2020(3): 104-106.
[28] IEC standard voltages: IEC 60038 Ed. 7.0 b:2009[S].
[29] GB/T 35727—2017, 中低压直流配电电压导则[S].
GB/T 35727—2017. Guideline for standard voltages of medium and low voltage DC distribution system[S].
[30] 袁金荣, 赵志刚, 姜颖异, 等. 基于近用户侧直流用电电器的电压等级选择[J]. 供用电, 2021, 38(1): 11-16.
YUAN J R, ZHAO Z G, JIANG Y Y, et al.DC voltage class selection based on electrical appliances near the user side[J]. Distribution & utilization, 2021, 38(1): 11-16.
[31] LI L Z, LI K J, SUN K Q, et al.A comparative study on voltage level standard for DC residential power systems[C]//2020 IEEE Industry Applications Society Annual Meeting. Detroit, MI, USA, 2021: 1-8.
[32] T/CABEE 030—2022, 中民用建筑直流配电设计标准:[S].
T/CABEE 030—2022, Design standard for DC power distribution in civil buildings[S].
[33] 马钊, 赵志刚, 孙媛媛, 等. 新一代低压直流供用电系统关键技术及发展展望[J]. 电力系统自动化, 2019, 43(23): 12-22.
MA Z, ZHAO Z G, SUN Y Y, et al.Key technologies and development prospect of new generation low-voltage DC power supply and utilization system[J]. Automation of electric power systems, 2019, 43(23): 12-22.
[34] 徐龙威, 孙媛媛, 马钊, 等. 低压直流供用电系统电压等级研究[J]. 供用电, 2022, 39(8): 3-14.
XU L W, SUN Y Y, MA Z, et al.Study on voltage level in low voltage direct current supply and utilization system[J]. Distribution & utilization, 2022, 39(8): 3-14.
[35] SIRAJ K, AHSAN S M, KHAN H A.Techno-economic evaluation of residential DC power system for multiple distribution voltages[C]//2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). Fort Lauderdale, FL, USA, 2021: 858-862.
[36] ZHAO H B, HU E D, ZHANG Z, et al.Reliability assessment of AC/DC hybrid distribution network considering renewable energy[C]//2019 4th International Conference on Power and Renewable Energy (ICPRE). Chengdu, China, 2020: 46-50.
[37] GB4706.1—2005, 家用和类似用途电器的安全第1部分: 通用要求[S].
GB4706.1—2005, Household and similar electrical appliances-safety-part 1: general requirements[S].
[38] DS/EN 60335-1:2012, Household and similar electrical appliances - Safety - Part 1: General requirements[S].
[39] AHN J H, KOO K W, KIM D H, et al.Comparative analysis and safety standard guideline of AC and DC supplied home appliances[C]//8th International Conference on Power Electronics - ECCE Asia. Jeju, Korea (South), 2011: 1118-1125.
[40] IEC 60479-1, Effects of current on human beings and livestock - Part 1: General aspects[S].
[41] UL 1699B,2018 UL Standard for safety photovoltaic(PV)DC arc-fault circuit protection[S].
[42] IEC 60364-1-2005,Low-voltage electrical installations - Part 1:Fundamental principles,assessment of general characteristics, definitions[S].
[43] GB/T2099.8—2017, 家用和类似用途插头插座第2-4部分: 安全特低电压(SELV)插头插座的特殊要求[S].
GB/T2099.8—2017, Plugs and socket-outlets for household and similar purposes—Part 2-4: Particular requirements for plugs and socket-outlets for SELV[S].
[44] GB2099.1, 家用和类似用途直流插头插座第1部分:通用要求》[S].
GB2099.1, DC plugs and socket-outlets for household and similar purposes-Part 1: General requirements[S].
[45] KIM Y J, KIM H.DC arc characteristics according to source voltage and load power level[C]//2018 7th International Conference on Renewable Energy Research and Applications (ICRERA). Paris, France, 2018: 205-208.
[46] CHEN S L, ZHAO Y M, MENG Y, et al.The influence of DC household electrical appliances on series arc fault characteristics[C]//2021 IEEE 66th Holm Conference on Electrical Contacts (HLM). San Antonio, TX, USA, 2022: 95-102.
[47] 赵军, 金玉, 李浩, 等. 基于虚拟储能的建筑可再生能源系统设计与优化[J]. 太阳能学报, 2021, 42(5): 91-97.
ZHAO J, JIN Y, LI H, et al.Design and optimization of building integrated renewable energy system based on virtual energy storage[J]. Acta energiae solaris sinica, 2021, 42(5): 91-97.
[48] 张祥宇, 舒一楠, 付媛, 等. 含虚拟储能直流微电网的源荷储能量协同优化控制[J]. 高电压技术, 2023, 49(8): 3497-3508.
ZHANG X Y, SHU Y N, FU Y, et al.Cooperative optimal control of source-load-storage energy in DC microgrid with virtual energy storage[J]. High voltage engineering, 2023, 49(8): 3497-3508.
[49] 房建军. 储能在光伏低压直流供电建筑中的作用和应用[J]. 储能科学与技术, 2021, 10(2): 624-629.
FANG J J.Function and practice of photovoltaic building energy storage system with low-voltage DC power supply[J]. Energy storage science and technology, 2021, 10(2): 624-629.
[50] XU P, HAVES P, PIETTE M, et al.Peak demand reduction from pre-cooling with zone temperature reset in an office building[J]. lawrence Berkeley National Laboratory, 2004.DOI:10.1023/B:EXPA.0000004341.11906.bf.
[51] ADUDA K O, LABEODAN T, ZEILER W, et al.Demand side flexibility: Potentials and building performance implications[J]. Sustainable cities and society, 2016, 22: 146-163.
[52] ALI M, JOKISALO J, KAI S R, et al.Combining the demand response of direct electric space heating and partial thermal storage using LP optimization[J]. Electric power systems research, 2014, 106: 160-167.
[53] JENSEN S Ø, MARSZAL-POMIANOWSKA A, LOLLINI R, et al.IEA EBC annex 67 energy flexible buildings[J]. Energy and buildings, 2017, 155: 25-34.
[54] 康靖, 李雨桐, 郝斌, 等. 多联机空调柔性负荷参与电力系统需求响应的实证研究[J]. 供用电, 2022, 39(8): 39-46.
KANG J, LI Y T, HAO B, et al.Empirical study on flexible load of multi connected air conditioning participating in power system demand response[J]. Distribution & utilization, 2022, 39(8): 39-46.
PDF(2219 KB)

Accesses

Citation

Detail

Sections
Recommended

/