RESEARCH AND FORECASTING ANALYSIS OF BLADE LOAD CORRELATION BASED ON COPULA FUNCTION

Bao Daorina, Gao Fan, Wang Peng, Zhang Shaohua, Han Feng

Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 323-329.

PDF(1933 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1933 KB)
Acta Energiae Solaris Sinica ›› 2023, Vol. 44 ›› Issue (12) : 323-329. DOI: 10.19912/j.0254-0096.tynxb.2023-0067

RESEARCH AND FORECASTING ANALYSIS OF BLADE LOAD CORRELATION BASED ON COPULA FUNCTION

  • Bao Daorina1, Gao Fan1, Wang Peng1, Zhang Shaohua2, Han Feng3
Author information +
History +

Abstract

In this paper, a Copula function model of wind speed-load is established for the correlation between wind speed and blade load, and a prediction method based on Copula function is proposed and the blade load is predicted. The correlation is modeled and the goodness-of-fit test is performed with the load data from wind tunnel tests of small and medium-sized variable pitch wind turbines, and the load is predicted by the prediction model, and the validity of the prediction effect is verified by the significance test. Take the 1.5 kW wind turbine blade load test data as an example to verify the proposed method. The results show that, based on the accurate analysis of wind speed and blade load correlation, the prediction model established by Copula function can effectively predict the blade load.

Key words

wind turbines / blades / wind speed / correlation / Copula function / load forecast

Cite this article

Download Citations
Bao Daorina, Gao Fan, Wang Peng, Zhang Shaohua, Han Feng. RESEARCH AND FORECASTING ANALYSIS OF BLADE LOAD CORRELATION BASED ON COPULA FUNCTION[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 323-329 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0067

References

[1] 包道日娜, 王鹏, 吴胜胜, 等. 新型变桨风力机关键部件载荷特性试验研究[J]. 太阳能学报, 2022, 43(7): 242-248.
BAO D R N, WANG P, WU S S, et al. Experimental study on load characteristics of key components of new variable pitch wind turbine[J]. Acta energiae solaris sinica, 2022, 43(7): 242-248.
[2] 周士栋, 薛扬, 马晓晶, 等. 基于SCADA数据的风电机组关键载荷预测[J]. 农业工程学报, 2018, 34(2): 219-225.
ZHOU S D, XUE Y, MA X J, et al.Prediction of wind turbine key load based on SCADA data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 219-225.
[3] 廖圣瑄, 马晓明, 韩中合, 等. 基于组合模型的风电机组轮毂载荷预测方法研究[J]. 中国测试, 2021, 47(5): 39-45.
LIAO S X, MA X M, HAN Z H, et al.Research on prediction method of wheel hub load of wind turbine based on combined model[J]. China measurement & test, 2021, 47(5): 39-45.
[4] OTHMAN M M, ABDELAZIZ A Y, HEGAZI Y G, et al.Approach for modelling stochastically dependent renewable energy-based generators using diagonal band copula[J]. IET renewable power generation, 2015, 9(7): 809-820.
[5] PARK H, BALDICK R.Optimal capacity planning of generation system integrating uncertain solar and wind energy with seasonal variability[J]. Electric power systems research, 2020, 180: 106072
[6] SCHINDLER D, BEHR H D, JUNG C.On the spatiotemporal variability and potential of complementarity of wind and solar resources[J]. Energy conversion and management, 2020, 218: 113016.
[7] 卢锦玲, 於慧敏. 基于混合Copula的风光功率相关结构分析[J]. 太阳能学报, 2017, 38(11): 3188-3194.
LU J L, YU H M.Dependence structure analysis of wind and PV power based on hybrid copula[J]. Acta energiae solaris sinica, 2017, 38(11): 3188-3194.
[8] 段偲默, 苗世洪, 霍雪松, 等. 基于动态Copula的风光联合出力建模及动态相关性分析[J]. 电力系统保护与控制, 2019, 47(5): 35-42.
DUAN S M, MIAO S H, HUO X S, et al.Modeling and dynamic correlation analysis of wind/solar power joint output based on dynamic Copula[J]. Power system protection and control, 2019, 47(5): 35-42.
[9] 黄宇, 张冰哲, 庞慧珍, 等. 基于混合Copula优化算法的风速预测方法研究[J]. 太阳能学报, 2022, 43(10): 192-201.
HUANG Y, ZHANG B Z, PANG H Z, et al.Research on wind speed forecasting method based on hybrid Copula optimization algorithm[J]. Acta energiae solaris sinica, 2022, 43(10): 192-201.
[10] HASHIMOTO S, YOSHIKI S, SAEKI R, et al.Development and application of traffic accident density estimation models using kernel density estimation[J]. Journal of traffic and transportation engineering(English edition), 2016, 3(3): 262-270.
[11] WAHBAH M, MOHANDES B, EL-FOULY T H M, et al. Unbiased cross-validation kernel density estimation for wind and PV probabilistic modelling[J]. Energy conversion and management, 2022, 266: 115811
[12] 谢中华. MATLAB统计分析与应用: 40个案例分析[M]. 北京: 北京航空航天大学出版社, 2010: 211-213.
XIE Z H.Statistical analysis and application of MATLAB: analysis of 40 cases[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2010: 211-213.
PDF(1933 KB)

Accesses

Citation

Detail

Sections
Recommended

/